Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer is one of the most common cancer types among women, acting as a distinct cause of mortality, and has a high incidence of recurrence. External stimuli, including 17β-estradiol (E2), transforming growth factor (TGF)-β1 and hypoxia, may be important in breast cancer growth and metastasis. However, the effects of these stimuli on breast cancer stem cell (CSC) regulation have not been fully investigated. In the present study, the proportion of cluster of differentiation (CD)44/CD24 cells increased following treatment with E2, TGF-β1 and hypoxia in MCF-7 cells. The expression of CSC markers, including SOX2, KLF4 and ABCG2, was upregulated continually by E2, TGF-β1 and hypoxia. In addition, the expression levels of epithelial-mesenchymal transition-associated factors increased following treatment with E2, TGF-β1 and hypoxia. Therefore, the migration ability of E2-, TGF-β1- and hypoxia-treated MCF-7 cells was enhanced compared with control cells. In addition, the enhancement of apoptosis by 5-flurouracil or radiation was abolished following treatment with E2, TGF-β1 and hypoxia. These results indicate that E2, TGF-β1 and hypoxia are important for regulating breast CSCs, and that the modulation of the microenvironment in tumors may improve the efficiency of breast cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774487 | PMC |
http://dx.doi.org/10.3892/ol.2016.4115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!