Patients exhibiting pancreatic cancer possess poor rates of survival. Therefore, the identification of a biomarker that can be measured non-invasively and be used to predict patient outcomes is required for the successful treatment of pancreatic cancer. The present study evaluated serum microRNA (miRNA/miR) profiles in patients exhibiting pancreatic cancer, who were treated with lapatinib and capecitabine in a phase II trial. Serum samples were collected for the measurement of a panel of miRNAs (miR-21, miR-210, miR-221 and miR-7) associated with the epidermal growth factor receptor (EGFR)1 and human epidermal growth factor receptor (HER)2 pathways. Preclinically, human pancreatic cancer PANC-1, MIA PaCa-2 and BXCP-3 cell lines were utilized for miRNA and drug resistance studies. In total, 6/17 patients treated experienced disease progression following 2 cycles of treatment [non-responders (NRS)], while another 6/17 patients exhibited a stable disease state and received >4 cycles of treatment [responders (RS); range, 4-22 cycles]. Five patients withdrew from the study due to severe toxicity or mortality. The mean overall survival time was 6.5 vs. 10.4 months for NRS and RS, respectively. Significant upregulation of serum miRNAs at earlier time points (3-6 weeks) was observed in NRS. miRNA levels increased with cancer progression, and lapatinib and 5-fluorouracil (5-FU; the active form of capecitabine) treatment increased the miRNA levels (specifically miR-210 and miR-221) in the treatment-resistant pancreatic cancer PANC-1 and MIA PaCa-2 cell lines. However, lapatinib and 5-FU treatment did not increase the miRNA levels in the treatment-sensitive BXPC-3 cell line. Inhibition of miR-221 increased the sensitivity of the PANC-1 cells to treatment. In conclusion, an increase in specific serum miRNAs was associated with resistance to lapatinib and capecitabine treatment. Additional investigation is required with regard to the application of the miRNA panel investigated in the present study as a potential predictor of patient responses to anti-EGFR/HER2 treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774452PMC
http://dx.doi.org/10.3892/ol.2016.4101DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
lapatinib capecitabine
12
mirna levels
12
treatment
9
disease progression
8
patients exhibiting
8
exhibiting pancreatic
8
mir-210 mir-221
8
epidermal growth
8
growth factor
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) typically occurs in an older patient population. Yet, early-onset pancreatic cancer (EOPC) has one of the fastest growing incidence rates. This study investigated the influence of age and tumor location on postoperative morbidity and mortality in a large, real-world dataset.

View Article and Find Full Text PDF

SIGLEC11 promotes M2 macrophage polarization through AKT-mTOR signaling and facilitates the progression of gastric cancer.

J Immunother Cancer

January 2025

Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: Sialic acid-binding immunoglobulin-like lectins (SIGLECs) are widely expressed on immune cell surfaces, play an important role in maintaining immune homeostasis and regulating inflammatory responses, and are increasingly emerging as potential targets for tumor immunotherapy. However, the expression profile and crucial role of SIGLEC11 in gastric cancer (GC) remain unclear. This study aimed to elucidate the prognostic relevance of SIGLEC11 expression and its role in the immune microenvironment in patients with GC.

View Article and Find Full Text PDF

Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9.

Dev Cell

December 2024

Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:

The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!