Quantum asymmetry between time and space.

Proc Math Phys Eng Sci

Centre for Quantum Dynamics , Griffith University, Nathan, Queensland 4111, Australia.

Published: January 2016

An asymmetry exists between time and space in the sense that physical systems inevitably evolve over time, whereas there is no corresponding ubiquitous translation over space. The asymmetry, which is presumed to be , is represented by equations of motion and conservation laws that operate differently over time and space. If, however, the asymmetry was found to be due to deeper causes, this conventional view of time evolution would need reworking. Here we show, using a sum-over-paths formalism, that a violation of time reversal (T) symmetry might be such a cause. If T symmetry is obeyed, then the formalism treats time and space symmetrically such that states of matter are localized both in space and in time. In this case, equations of motion and conservation laws are undefined or inapplicable. However, if T symmetry is violated, then the same sum over paths formalism yields states that are localized in space and distributed without bound over time, creating an asymmetry between time and space. Moreover, the states satisfy an equation of motion (the Schrödinger equation) and conservation laws apply. This suggests that the time-space asymmetry is as currently presumed, and that T violation may have a deep connection with time evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786044PMC
http://dx.doi.org/10.1098/rspa.2015.0670DOI Listing

Publication Analysis

Top Keywords

time space
20
space asymmetry
12
conservation laws
12
time
11
asymmetry time
8
space
8
equations motion
8
motion conservation
8
time evolution
8
localized space
8

Similar Publications

Recently, photo-assisted electrocatalysis as an emerging catalytic approach that combines the technologies of photocatalysis and electrocatalysis has attracted great interest among researchers. Under this circumstance, the NiFe-LDH compounded with PbS based (PbS@NFHS) heterojunction with both photoactive and electrocatalytic properties was constructed for the first time through an ambient etching route and a subsequent low-temperature hydrothermal method. The as-prepared catalyst displayed a novel hierarchical 3D open structure based on nanosheets, which offered numerous electrochemically active sites, facilitated the swift diffusion of ions and enhanced both electrical conductivity and catalytic stability, thus significantly improving the catalytic performance.

View Article and Find Full Text PDF

In this paper, we present a global reactive motion planning framework designed for robotic manipulators navigating in complex dynamic environments. Utilizing local minima-free circular fields, our methodology generates reactive control commands while also leveraging global environmental information from arbitrary configuration space motion planners to identify promising trajectories around obstacles. Furthermore, we extend the virtual agents framework introduced in Becker et al.

View Article and Find Full Text PDF

Speech Enhancement for Cochlear Implant Recipients using Deep Complex Convolution Transformer with Frequency Transformation.

IEEE/ACM Trans Audio Speech Lang Process

February 2024

CRSS: Center for Robust Speech Systems; Cochlear Implant Processing Laboratory (CILab), Department of Electrical and Computer Engineering, University of Texas at Dallas, USA.

The presence of background noise or competing talkers is one of the main communication challenges for cochlear implant (CI) users in speech understanding in naturalistic spaces. These external factors distort the time-frequency (T-F) content including magnitude spectrum and phase of speech signals. While most existing speech enhancement (SE) solutions focus solely on enhancing the magnitude response, recent research highlights the importance of phase in perceptual speech quality.

View Article and Find Full Text PDF

Architectural planning robot driven by unsupervised learning for space optimization.

Front Neurorobot

January 2025

Department of Architectural Engineering, Jinhua Polytecnich, Jinhua, Zhejiang, China.

Introduction: Space optimization in architectural planning is a crucial task for maximizing functionality and improving user experience in built environments. Traditional approaches often rely on manual planning or supervised learning techniques, which can be limited by the availability of labeled data and may not adapt well to complex spatial requirements.

Methods: To address these limitations, this paper presents a novel architectural planning robot driven by unsupervised learning for automatic space optimization.

View Article and Find Full Text PDF

Background: Sublobar resection is suitable for peripheral stage I lung adenocarcinoma (LUAD). However, if tumor spread through air spaces (STAS) present, the lobectomy will be considered for a survival benefit. Therefore, STAS status guide peripheral stage I LUAD surgical approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!