The constant inflow and variable outflow (CIVO) theory correctly predicts that spontaneous pulsation of the retinal veins will be visible close to the point where the vein exits the eye at the lamina cribrosa but will decrease rapidly in amplitude and become too small to see only a short distance upstream. However, the phase of vein oscillation relative to the oscillation of the intraocular pressure (IOP) predicted by CIVO has been unclear and controversial. We show that the CIVO model is indeterminate in predicting such phase relations. We propose a simple extension of the CIVO model that retains its basic equations but applies them to a larger domain that includes not only the intraocular (pre-laminar) portion of the vein but also the retrobulbar (post-laminar) portion of the vein behind the eye. We show that this extended CIVO model makes definite predictions about the phase of vein oscillation relative to the oscillation of IOP. This phase relationship is determined by the relative amplitude and phase of pulsations of the IOP and of the cerebrospinal fluid pressure (CSFP). If IOP and CSFP oscillate in phase, then the pre-laminar vein oscillates in phase with IOP when the amplitude of CSFP exceeds the amplitude of IOP but oscillates in counter phase with IOP when the amplitude of IOP exceeds that of CSFP. These relationships are modified when there is a phase difference between the oscillations of IOP and CSFP. When CSFP leads IOP, the phase of vein oscillation is advanced if the amplitude of CSFP exceeds that of IOP and is delayed if the amplitude of IOP exceeds that of CSFP. The result in each case is that maximum vein size occurs during the rising phase of IOP (ocular systole). We conclude that the driving force of vein oscillation is the difference between the oscillations of IOP and CSFP. The phase of this difference determines the phase relationships above. We show that additional delays in the phase of venous pulsation relative to that of IOP are induced by constriction of the vein within the lamina cribrosa and by recording the vein pulsations upstream from the lamina cribrosa. The amplitude of vein oscillation is proportional to the amplitude of the driving force and to the venous capacitance. Loss of spontaneous retinal vein pulsation with increase in mean CSFP is determined primarily by reduced venous capacitance. Increased amplitude of pulsation may occur when IOP is increased. It is the result of increased venous capacitance and possibly increased driving force of the pulsation. However, in chronic glaucoma the increase in capacitance may be counteracted by venous outflow obstruction, and the increase in driving force may be counteracted by reduced ocular blood flow. As a result retinal vein oscillation may be reduced in amplitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2016.03.005 | DOI Listing |
J Biomech
January 2025
Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia.
Although there is currently sufficient information on various parameters of capillary blood flow, including the average values of blood velocity, there is no data on the dynamics of velocity and the mechanisms of its modulation in various parts of the capillary. The main idea of this work is to develop a tool and image data processing to study the characteristics of the capillary blood flow dynamics. In this study, using the developed method of high-speed videocapillaroscopy, the red blood cells (RBC) velocities in the arterial and venous parts of the nailfold capillaries were compared and a time-frequency analysis of the dynamics of the velocity signals with the calculation of phase coherence was performed.
View Article and Find Full Text PDFPediatr Res
December 2024
Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Background: During mammalian gestation, fetal circadian rhythms are thought to be mainly controlled by maternal signals. In humans, the initiation and activity of central and peripheral circadian clocks is largely unknown. This study aimed to elucidate the developmental clock properties in human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFNanophotonics
February 2024
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
By confining light into a deep subwavelength scale to match the characteristic dimension of quantum emitters, plasmonic nanocavities can effectively imprint the light emission with unique properties in terms of intensity, directionality, as well as polarization. In this vein, achiral quantum emitters can generate chiral photons through coupling with plasmonic nanocavities with either intrinsic or extrinsic chirality. As an important metric for the chiral-photon purity, the degree of circular polarization (DCP) is usually tuned by various scattered factors such as the nanocavity design, the emitter type, and the coupling strategy.
View Article and Find Full Text PDFJ Control Release
December 2024
Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands. Electronic address:
Locally opening up the endothelial barrier in a safe and controlled way is beneficial for drug delivery into the extravascular tissue. Although ultrasound-induced microbubble oscillations can affect the endothelial barrier integrity, the mechanism remains unknown. Here we uncover a new role for F-actin in microbubble-mediated endothelial gap formation.
View Article and Find Full Text PDFFluids Barriers CNS
October 2024
Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France.
Background: Following the Monro-Kellie doctrine, the Cerebral Blood Volume Changes (CB_VC) should be mirrored by the Cerebrospinal Fluid Volume Changes (CSF_VC) at the spinal canal. Cervical level is often chosen to estimate CB_VC during the cardiac cycle. However, due to the heterogeneity in the anatomy of extracranial internal jugular veins and their high compliance, we hypothesize that the intracranial level could be a better choice to investigate blood and cerebrospinal fluid (CSF) interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!