In our present work, five previously proposed sp(3) carbon crystals were suggested as silicon allotropes and their stabilities, electronic and optical properties were investigated using the first-principles method. We find that these allotropes with direct or quasi-direct band gaps in a range of 1.2-1.6 eV are very suitable for applications in thin-film solar cells. They display strong adsorption coefficients in the visible range of sunlight in comparison with diamond silicon. These five silicon allotropes are confirmed to possess positive dynamical stability and remarkable themodynamical stability close to that of diamond silicon. In particular, the direct band gap M585-silicon possessing energy higher than diamond silicon only 25 meV per atom is expected to be experimentally produced for thin-film solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp00451b | DOI Listing |
ACS Omega
December 2024
Faculty UnB Planaltina, Materials Science Postgraduate Program, University of Brasília, Brasília, Federal District 73345-010, Brazil.
Two-dimensional (2D) silicon-based materials have garnered significant attention for their promising properties, making them suitable for various advanced technological applications. Here, we present Irida-Silicene (ISi), a novel 2D silicon allotrope inspired by Irida-Graphene (IG), which was recently proposed and is entirely composed of carbon atoms. ISi exhibits a buckled structure composed of 3-6-8 membered rings, unlike its planar carbon counterpart.
View Article and Find Full Text PDFNanoscale
November 2024
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, New Jersey, USA.
Sci Rep
August 2024
Computational Materials Laboratory, LCCMat, Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil.
Silicon-based two-dimensional (2D) materials have garnered significant attention due to their unique properties and potential applications in electronics, optoelectronics, and other advanced technologies. Here, we present a comprehensive investigation of a novel silicon allotrope, Popsilicene (Pop-Si), derived from the structure of Popgraphene. Using density functional theory and ab initio molecular dynamics simulations, we explore the thermal stability, mechanical and electronic properties, and optical characteristics of Pop-Si.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2024
Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
We have performed a comprehensive numerical and analytical examination of two crucial transport aspects in silicene: the phonon-drag thermopower,Sp, and the electron's energy loss rate,Fe. Specifically, our investigation is centered on their responses to out-of-plane flexural phonons and in-plane acoustic phonons in silicene, a two-dimensional allotrope of silicon as a function of electron temperature,T,and electron concentration,n,upto the room temperature. It is found that the calculated quantities have a non-monotonic dependence for the phonon modes for both parameters(T and n)considered while analytical results predict definite dependencies up to the complete low-temperature Bloch-Gruneisen (BG) regime.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2023
Instituto Federal do Espírito Santo, Ibatiba-ES, 29395-000, Brazil.
Defect engineering of two-dimensional (2D) materials offers an unprecedented route to increase their functionality and broaden their applicability. In light of the recent synthesis of the 2D Silicon Carbide (SiC), a deep understanding of the effect of defects on the physical and chemical properties of this new SiC allotrope becomes highly desirable. This study investigates 585 extended line defects (ELDs) in hexagonal SiC considering three types of interstitial atom pairs (SiSi-, SiC-, and CC-ELD) and using computational methods like Density Functional Theory, Born-Oppenheimer Molecular Dynamics, and Kinetic Monte-Carlo (KMC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!