The gene whcE in Corynebacterium glutamicum positively responds to oxidative and heat stress. To search for proteins that interact with WhcE, we employed a two-hybrid system with WhcE as the bait. Sequencing analysis of the isolated clones revealed peptide sequences, one of which showed high sequence identity to a hydrophobe/amphiphile efflux-1 family transporter encoded by NCgl1497. The interaction of the NCgl1497-encoded protein with WhcE in vivo was verified using reporter gene expression by real-time quantitative PCR (RT-qPCR). The WhcE protein strongly interacted with the NCgl1497-encoded protein in the presence of oxidative and heat stress. Furthermore, purified WhcE and NCgl1497-encoded proteins interacted in vitro, especially in the presence of the oxidant diamide, and the protein-protein interaction was disrupted in the presence of the reductant dithiothreitol. In addition, the transcription of NCgl1497 was activated approximately twofold in diamide- or heat-treated cells. To elucidate the function of the NCgl497 gene, an NCgl1497-deleted mutant strain was constructed. The mutant showed decreased viability in the presence of diamide and heat stress. The mutant strain also exhibited reduced transcription of the thioredoxin reductase gene, which is known to be regulated by whcE. Based on the results, NCgl1497 was named spiE (stress protein interacting with WhcE). Collectively, our data suggest that spiE is involved in the whcE-mediated oxidative stress response pathway of C. glutamicum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-016-7440-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!