Caspase-1-independent Maturation of IL-1β in Ischemic Brain Injury: is there a Role for Gelatinases?

Mini Rev Med Chem

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, ed. Polifunzionale, 87036, Rende (CS), Italy.

Published: December 2016

Ischemic stroke is a devastating condition primarily caused by reduced blood supply to the brain. Interleukin (IL)-1β is a pro-inflammatory cytokine that plays a pivotal role in the detrimental inflammatory processes that participate to cerebral ischemic damage. After injury, it is produced by distinct cells of the neurovascular unit as an inactive precursor, pro-IL-1β. Although previous studies have suggested that caspase-1 is the main enzyme implicated in the cleavage of pro-IL-1β into the biologically active cytokine, recent work has demonstrated that, under ischemia-reperfusion conditions, other mechanisms may be involved in cytokine maturation. Indeed, we have shown that in rats subjected to transient middle cerebral artery occlusion (MCAo), elevation of IL-1β levels is paralleled by an elevation of gelatinolytic, but not caspase-1 activity in the injured hemisphere and pharmacological inhibition of gelatinases, i.e. matrix metalloproteases (MMP)-2 and MMP-9 prevents cytokine maturation. These findings further support the hypothesis that, under ischemia-reperfusion injury, cerebral elevation of IL-1β occurs via mechanisms other than caspase-1, likely involving gelatinases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557516666160321112512DOI Listing

Publication Analysis

Top Keywords

cytokine maturation
8
elevation il-1β
8
caspase-1-independent maturation
4
il-1β
4
maturation il-1β
4
il-1β ischemic
4
ischemic brain
4
brain injury
4
injury role
4
role gelatinases?
4

Similar Publications

An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy.

Adv Mater

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China.

Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs).

View Article and Find Full Text PDF

In recent years, increased numbers of severe Streptococcus dysgalactiae subsp. equisimilis (SDSE) infections, including necrotizing soft tissue infections (NSTIs), have been reported. One of the main virulence factors of SDSE is streptokinase (Ska).

View Article and Find Full Text PDF

Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against -mutant melanoma.

Bioact Mater

April 2025

Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.

View Article and Find Full Text PDF

Activation and evasion of inflammasomes during viral and microbial infection.

Cell Mol Life Sci

January 2025

Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.

The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses.

View Article and Find Full Text PDF

Modulation of Lymphotoxin β Surface Expression by Kaposi's Sarcoma-Associated Herpesvirus K3 Through Glycosylation Interference.

J Med Virol

January 2025

Department of Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Kaposi's sarcoma-associated herpesvirus (KSHV) employs diverse mechanisms to subvert host immune responses, contributing to its infection and pathogenicity. As an immune evasion strategy, KSHV encodes the Membrane-Associated RING-CH (MARCH)-family E3 ligases, K3, and K5, which target and remove several immune regulators from the cell surface. In this study, we investigate the impact of K3 and K5 on lymphotoxin receptor (LTβR) ligands, LTβ and LIGHT, which are type II transmembrane proteins and function as pivotal immune mediators during virus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!