A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. | LitMetric

Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

Environ Pollut

Soil Physics Group, Division of Geoscience, University of Bayreuth, 95440 Bayreuth, Germany.

Published: June 2016

We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2016.01.089DOI Listing

Publication Analysis

Top Keywords

soil structure
12
sulfonamide antibiotics
12
structure transport
8
transport sulfonamide
8
sorption potential
8
potential antibiotics
8
soil columns
8
soil
7
antibiotics
6
sorption
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!