Alternative haplotype construction methods for genomic evaluation.

J Dairy Sci

INRA, UMR1313 Génétique animale et biologie intégrative, 78350 Jouy-en-Josas, France.

Published: June 2016

Genomic evaluation methods today use single nucleotide polymorphism (SNP) as genomic markers to trace quantitative trait loci (QTL). Today most genomic prediction procedures use biallelic SNP markers. However, SNP can be combined into short, multiallelic haplotypes that can improve genomic prediction due to higher linkage disequilibrium between the haplotypes and the linked QTL. The aim of this study was to develop a method to identify the haplotypes, which can be expected to be superior in genomic evaluation, as compared with either SNP or other haplotypes of the same size. We first identified the SNP (termed as QTL-SNP) from the bovine 50K SNP chip that had the largest effect on the analyzed trait. It was assumed that these SNP were not the causative mutations and they merely indicated the approximate location of the QTL. Haplotypes of 3, 4, or 5 SNP were selected from short genomic windows surrounding these markers to capture the effect of the QTL. Two methods described in this paper aim at selecting the most optimal haplotype for genomic evaluation. They assumed that if an allele has a high frequency, its allele effect can be accurately predicted. These methods were tested in a classical validation study using a dairy cattle population of 2,235 bulls with genotypes from the bovine 50K SNP chip and daughter yield deviations (DYD) on 5 dairy cattle production traits. Combining the SNP into haplotypes was beneficial with all tested haplotypes, leading to an average increase of 2% in terms of correlations between DYD and genomic breeding value estimates compared with the analysis when the same SNP were used individually. Compared with haplotypes built by merging the QTL-SNP with its flanking SNP, the haplotypes selected with the proposed criteria carried less under- and over-represented alleles: the proportion of alleles with frequencies <1 or >40% decreased, on average, by 17.4 and 43.4%, respectively. The correlations between DYD and genomic breeding value estimates increased by 0.7 to 0.9 percentage points when the haplotypes were selected using any of the proposed methods compared with using the haplotypes built from the QTL-SNP and its flanking markers. We showed that the efficiency of genomic prediction could be improved at no extra costs, only by selecting the proper markers or combinations of markers for genomic prediction. One of the presented approaches was implemented in the new genomic evaluation procedure applied in dairy cattle in France in April 2015.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2015-10433DOI Listing

Publication Analysis

Top Keywords

genomic evaluation
20
genomic prediction
16
genomic
13
snp
12
snp haplotypes
12
dairy cattle
12
haplotypes
11
bovine 50k
8
50k snp
8
snp chip
8

Similar Publications

Background: Central nervous system (CNS) tumors lead to cancer-related mortality in children. Genetic ancestry-associated cancer prevalence and outcomes have been studied, but is limited.

Methods: We performed genetic ancestry prediction in 1,452 pediatric patients with paired normal and tumor whole genome sequencing from the Open Pediatric Cancer (OpenPedCan) project to evaluate the influence of reported race and ethnicity and ancestry-based genetic superpopulations on tumor histology, molecular subtype, survival, and treatment.

View Article and Find Full Text PDF

Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs.

View Article and Find Full Text PDF

About one out of two diabetic patients develop diabetic neuropathy (DN), of these 20% experience neuropathic pain (NP) leading to individual, social, and health-economic burden. Risk factors for NP are largely unknown; however, premature aging was recently associated with several chronic pain disorders. DNA methylation-based biological age (DNAm) is associated with disease risk, morbidity, and mortality in different clinical settings.

View Article and Find Full Text PDF

Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.

Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous make-up of myeloid cells that influences the therapeutic response and prognosis. However, understanding the myeloid cell at both a genetic and cellular level remains a significant challenge.

Methods: Single-cell RNA sequencing (scRNA-seq) data were downloaded from t the Tumor Immune Single-cell Hub and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!