Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The capsule is one of the most important solid dosage forms in the pharmaceutical industry. It is easier and faster to produce than a tablet, because it requires fewer excipients. Generally, capsules are easy to swallow and mask any unpleasant taste of the substances used while their release profiles can be easily modified. Papaverine hydrochloride was used as a model substance to show different release profiles using different excipients.
Objectives: The main aim of the study was to analyze the impact of using different polymers on the release profile of papaverine hydrochloride from hard gelatin capsules.
Material And Methods: Six series of hard gelatin capsules containing papaverine hydrochloride as a model drug and different excipients were made. Then, the angle of repose, flow rate, mass flow rate and volume flow rate of the powders used for capsule production were analyzed. The uniform weight and disintegration time of the capsules were studied. The dissolution study was performed in a basket apparatus, while the amount of papaverine hydrochloride released was determined spectrophotometrically at 251 nm.
Results: Only one formula of powder had satisfactory flow properties, while all formulas had good Hausner ratios. The best properties were from powder containing polyvinylpyrrolidone 10k. The disintegration time of capsules varied from 1:30 min to 2:00 min. As required by Polish Pharmacopoeia X, 80% of the active substance in all cases was released within 15 minutes. The capsules with polyvinylpyrrolidone 10k were characterized by the longest release. On the other hand, capsules containing microcrystalline cellulose had the fastest release profile.
Conclusions: Using 10% of different polymers, without changing the other excipients, had a significant impact on the physical properties of the powders and papaverine hydrochloride release profile. The two most preferred capsule formulations contained either polyvinylpyrrolidone 10k or microcrystalline cellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17219/pim/60764 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!