Salmonella enterica serovar Typhimurium utilizes the ClpPX and Lon proteases for optimal fitness in the ceca of chickens.

Poult Sci

Prestage Department of Poultry Science, North Carolina State University, Raleigh 27695. Electronic address:

Published: July 2016

AI Article Synopsis

Article Abstract

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a leading cause of salmonellosis. Poultry and poultry products are implicated in transmission of Salmonella to humans. In 2013, an outbreak of S Typhimurium occurred that comprised 39 states within the United States and was associated with backyard flocks of chickens. Colonization of the avian host by S Typhimurium requires numerous genetic factors encoded within the bacterium. Of particular interest are genetic factors induced by alternative sigma factors within S Typhimurium since these genetic elements are important for adaptation to different environmental stresses. The heat shock response is a dedicated change in gene regulation within bacteria in response to several stresses, specifically growth at 42°C. Because chickens have a higher body temperature than other animals (42°C) the hypothesis was tested that components of the heat shock response are important for optimal fitness within the chicken. To this end, deletion of the heat shock proteases clpPX (BTNC0022) or lon (BTNC0021) was accomplished and the bacterial fitness in vivo was compared to the "wild-type" strain (NC1040) using a competition assay. One-day-old chicks were orally gavaged with an equal mixture of NC1040 and either BTNC0022 or BTNC0021. Quantification of viable bacteria over time by using plate counts indicated that deletion of either heat shock protease resulted in significantly reduced colonization of the chicken ceca compared to the wild-type strain. To satisfy the molecular Koch's postulates, clpPX and lon mutants were complemented in trans using a low-copy number plasmid for additional in vivo experiments. Complementation studies confirmed the importance of either heat shock protease to colonization of the chicken ceca. This report demonstrated that both ClpPX and Lon were important for optimal fitness within chickens. Moreover, these results suggested that components of the heat shock may be critical factors used by S. Typhimurium for colonization of poultry. The use of feed additives or other treatments that inactivate or inhibit ClpPX or Lon may reduce the bacterial burden of S. Typhimurium in poultry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957304PMC
http://dx.doi.org/10.3382/ps/pew103DOI Listing

Publication Analysis

Top Keywords

heat shock
24
clppx lon
16
optimal fitness
12
salmonella enterica
8
enterica serovar
8
typhimurium
8
serovar typhimurium
8
genetic factors
8
factors typhimurium
8
shock response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!