QTLs for uniform grain dimensions and germination selected during wheat domestication are co-located on chromosome 4B.

Theor Appl Genet

Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, The Institute for Cereal Crop Improvement, Tel Aviv University, 69978, Tel Aviv, Israel.

Published: July 2016

A major locus on the long arm of wheat chromosome 4B controls within-spikelet variation in both grain size and seed dormancy, the latter an important survival mechanism likely eliminated from wild wheat during domestication. Seed dormancy can increase the probability of survival of at least some progeny under unstable environmental conditions. In wild emmer wheat, only one of the two grains in a spikelet germinates during the first rainy season following maturation; and this within-plant variation in seed dormancy is associated with both grain dimension differences and position within the spikelet. Here, in addition to characterizing these associations, we elucidate the genetic mechanism controlling differential grain dimensions and dormancy within wild tetraploid wheat spikelets using phenotypic data from a wild emmer × durum wheat population and a high-density genetic map. We show that in wild emmer, the lower grain within the spikelet is about 30 % smaller and more dormant than the larger, upper grain that germinates usually within 3 days. We identify a major locus on the long arm of chromosome 4B that explains >40 % of the observed variation in grain dimensions and seed dormancy within spikelets. This locus, designated QGD-4BL, is validated using an independent set of wild emmer × durum wheat genetic stocks. The domesticated variant of this novel locus on chromosome 4B, likely fixed during the process of wheat domestication, favors spikelets with seeds of uniform size and synchronous germination. The identification of locus QGD-4BL enhances our knowledge of the genetic basis of the domestication syndrome of one of our most important crops.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-016-2704-4DOI Listing

Publication Analysis

Top Keywords

seed dormancy
16
grain dimensions
12
wheat domestication
12
wheat
8
major locus
8
locus long
8
long arm
8
variation grain
8
wild emmer
8
wild emmer × durum
8

Similar Publications

Background: Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure.

Results: In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity.

View Article and Find Full Text PDF

Integrated analyses provide insights into the seed dormancy mechanisms of the endangered plant Sinojackia sarcocarpa.

Genomics

January 2025

Southwest Economic Plants Hybrid and Breeding Center, College of Life Science, Leshan Normal University, Leshan 614000, China. Electronic address:

Sinojackia sarcocarpa, an endangered ornamental plant endemic to China, faces germination challenges that contribute to its endangered status. The mechanisms of its seed dormancy are not well understood. This study used morphological, physiological, transcriptomic, and gene function analyses to investigate these mechanisms.

View Article and Find Full Text PDF

Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated.

View Article and Find Full Text PDF

The minimal sampling effort required to report the microbiome composition of insect surveyed in natural environment is often based on empirical or logistical constraints. This question was addressed with the white pine cone beetle, (Schwarz), a devastating insect pest of seed orchards. It attacks and stop the growth of the cones within which it will spend its life, on the ground.

View Article and Find Full Text PDF

The phosphatidylethanolamine-binding protein (PEBP) family members FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) are major regulators of plant reproduction. In Arabidopsis, the FT/TFL1 balance defines the timing of floral transition and the determination of inflorescence meristem identity. However, emerging studies have elucidated a plethora of previously unknown functions for these genes in various physiological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!