Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2015.12.074 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Research Center for Vaccine and Drugs, The National Research and Innovation Agency (BRIN), South Tangerang 15310, Indonesia.
Objective: The progress made in cancer immunology has led to the development of innovative therapeutic strategies. However, despite these advances, the superficial characteristics of immune cells have been frequently overlooked: This oversight may be attributed to a limited understanding of the intricate relationships between immune cells and their microenvironment. This study seeks to address this limitation by comprehensively examining cell size and granularity in breast cancer (BC) patients and healthy donors (HD).
View Article and Find Full Text PDFMol Divers
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.
The bacterium is able to invade lung epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, it is currently unclear how OMVs from (PA-OMVs) affect lung epithelial cells and their impact on oxidative stress, autophagy, and other physiological activities of lung epithelial cells. In this study, we found that PA-OMVs activated oxidative stress and autophagy in cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!