A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionality of soybean CBF/DREB1 transcription factors. | LitMetric

Functionality of soybean CBF/DREB1 transcription factors.

Plant Sci

Biology Department, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202, United States. Electronic address:

Published: May 2016

Soybean (Glycine max) is considered to be cold intolerant and is not able to significantly acclimate to cold/freezing stress. In most cold tolerant plants, the C-repeat/DRE Binding Factors (CBF/DREBs) are critical contributors to successful cold-responses; rapidly increasing following cold treatment and regulating the induction of many cold responsive genes. In soybean vegetative tissue, we found strong, transient accumulation of CBF transcripts in response to cold stress; however, the soybean transcripts of typical cold responsive genes (homologues to Arabidopsis genes such as dehydrins, ADH1, RAP2.1, and LEA14) were not significantly altered. Soybean CBFs were found to be functional, as when expressed constitutively in Arabidopsis they increased the levels of AtCOR47 and AtRD29a transcripts and increased freezing tolerance as measured by a decrease in leaf freezing damage and ion leakage. Furthermore the constitutive expression of GmDREB1A;2 and GmDREB1B;1 in Arabidopsis led to stronger up-regulation of downstream genes and more freezing tolerance than GmDREB1A;1, the gene whose transcript is the major contributor to total CBF/DREB1 transcripts in soybean. The inability for the soybean CBFs to significantly up regulate the soybean genes that contribute to cold tolerance is consistent with poor acclimation capability and the cold intolerance of soybean.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2016.02.007DOI Listing

Publication Analysis

Top Keywords

soybean
8
cold
8
cold responsive
8
responsive genes
8
soybean cbfs
8
freezing tolerance
8
genes
5
functionality soybean
4
soybean cbf/dreb1
4
cbf/dreb1 transcription
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!