The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796801 | PMC |
http://dx.doi.org/10.1016/j.neo.2016.02.002 | DOI Listing |
Curr Protein Pept Sci
January 2025
Center for Interdisciplinary Biosciences, Technology and Innovation Park P. J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia.
Neoplastic transformation of B cells of the post-germinative center can lead to oncohematological dyscrasias, which often results in an abnormal production of monoclonal immunoglobulin light chains. The non-physiological production of large amounts of IgG light chains leads to the formation of extracellular deposits called 'aggregomas' and rare conditions such as light chain crystal deposition disease. Kidney manifestations and heavy-chain deposition disease can also occur in plasma cell dyscrasias, emphasizing the role of IgG misfolding and aggregation.
View Article and Find Full Text PDFBull Math Biol
January 2025
Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.
View Article and Find Full Text PDFPathologica
December 2024
Functional and Molecular Neuroimaging Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
Objectives: The aim of the present study was to analyze the methylation status in patients who presented with an Oral Squamous Cell Carcinoma (OSCC) concomitantly with multifocal Proliferative Verrucous Leukoplakia (PVL)(PVL-OSCC).
Methods: Nine patients with OSCC and concomitant PVL lesions were selected. Two brushing samples were collected simultaneously from OSCC and PVL lesions in contralateral mucosa from each patient.
J Transl Med
January 2025
Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.
Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.
View Article and Find Full Text PDFNat Immunol
January 2025
Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!