Prenatal exposure to excess glucocorticoid has been shown to have adverse effects on the developing nervous system that may lead to alterations of fetal and adult neurogenesis, resulting in behavioral changes. In addition, an imbalance of the redox state, with an increased susceptibility to oxidative stress, has been observed in rodent neural stem cells exposed to the synthetic glucocorticoid analog dexamethasone (Dex). In the present study, we used the induced pluripotent stem cells (IPSC)-derived lt-NES AF22 cell line, representative of the neuroepithelial stage in central nervous system development, to investigate the heritable effects of Dex on reactive oxygen species (ROS) balance and its impact on neuronal differentiation. By analysing gene expression in daughter cells that were never directly exposed to Dex, we could observe a downregulation of four key antioxidant enzymes, namely Catalase, superoxide dismutase 1, superoxide dismutase 2 and glutathione peroxidase7, along with an increased intracellular ROS concentration. The imbalance in the intracellular REDOX state was associated to a significant downregulation of major neuronal markers and a concomitant increase of glial cells. Interestingly, upon treatment with the antioxidant N-acetyl-cysteine (NAC), the misexpression of both neuronal and glial markers analyzed was recovered. These novel findings point to the increased ROS concentration playing a direct role in the heritable alterations of the differentiation potential induced by Dex exposure. Moreover, the data support the hypothesis that early insults may have detrimental long-lasting consequences on neurogenesis. Based on the positive effects exerted by NAC, it is conceivable that therapeutic strategies including antioxidants may be effective in the treatment of neuropsychiatric disorders that have been associated to increased ROS and impaired neurogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2016.03.022DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
8
reactive oxygen
8
oxygen species
8
nervous system
8
redox state
8
stem cells
8
superoxide dismutase
8
ros concentration
8
increased ros
8
cells
5

Similar Publications

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Multimodal study of Alzheimer's disease (AD) dorsolateral prefrontal cortex (DLPFC) showed AD-related aberrant intron retention (IR) and proteomic changes not observed at the RNA level. However, the role of sex and how IR may impact the proteome are unclear. Analysis of DLPFC transcriptome showed a clear sex-biased pattern where female AD had 1645 elevated IR events compared to 80 in male AD DLPFC.

View Article and Find Full Text PDF

Protocol for live imaging of axonal transport in iPSC-derived iNeurons.

STAR Protoc

January 2025

Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany. Electronic address:

Studies of human induced pluripotent stem cell (iPSC)-derived neurons promise important insights into neurodegenerative diseases. Here, we present a protocol for live imaging of axonal transport in glutamatergic iPSC-derived neurons (iNeurons). We describe steps for the differentiation of iPSCs into iNeurons via PiggyBac-mediated neurogenin 2 (NGN2) delivery, iNeuron culture and transfection, and the acquisition and analysis of time-lapse images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!