Successful tissue engineering of competent allogeneic venous valves.

J Vasc Surg Venous Lymphat Disord

Department of Vascular Surgery, Oslo Vascular Centre, Oslo University Hospital, Aker, Norway; Vascular Department, University of Oslo, Oslo, Norway.

Published: October 2015

AI Article Synopsis

  • The study aimed to assess the functionality of tissue-engineered human allogeneic vein valves, focusing on their closure time and ability to handle reflux pressure in a lab setting.
  • Fifteen vein segments were harvested from cadavers; four were found incompetent, but those that underwent decellularization and recellularization showed significant retention of structural proteins and mechanical properties.
  • The research concluded that these engineered vein valves could serve as effective models for future studies and potential clinical uses, particularly in treating conditions like venous hypertension.

Article Abstract

Objective: The purpose of this study was to evaluate whether tissue-engineered human allogeneic vein valves have a normal closure time (competency) and tolerate reflux pressure in vitro.

Methods: Fifteen human allogeneic femoral vein segments containing valves were harvested from cadavers. Valve closure time and resistance to reflux pressure (100 mm Hg) were assessed in an in vitro model to verify competency of the vein valves. The segments were tissue engineered using the technology of decellularization (DC) and recellularization (RC). The decellularized and recellularized vein segments were characterized biochemically, immunohistochemically, and biomechanically.

Results: Four of 15 veins with valves were found to be incompetent immediately after harvest. In total, 2 of 4 segments with incompetent valves and 10 of 11 segments with competent valves were further decellularized using detergents and DNAse. DC resulted in significant decrease in host DNA compared with controls. DC scaffolds, however, retained major extracellular matrix proteins and mechanical integrity. RC resulted in successful repopulation of the lumen and valves of the scaffold with endothelial and smooth muscle cells. Valve mechanical parameters were similar to the native tissue even after DC. Eight of 10 veins with competent valves remained competent even after DC and RC, whereas the two incompetent valves remained incompetent even after DC and RC. The valve closure time to reflux pressure of the tissue-engineered veins was <0.5 second.

Conclusions: Tissue-engineered veins with valves provide a valid template for future preclinical studies and eventual clinical applications. This technique may enable replacement of diseased incompetent or damaged deep veins to treat axial reflux and thus reduce ambulatory venous hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvsv.2014.12.002DOI Listing

Publication Analysis

Top Keywords

closure time
12
reflux pressure
12
valves
10
human allogeneic
8
vein valves
8
vein segments
8
valve closure
8
valves segments
8
incompetent valves
8
competent valves
8

Similar Publications

Introduction: Soft-tissue defect is commonly seen in immediate maxillary posterior implantation because of tooth extraction wound and tension from bone graft. Bone graft materials exposure has a significant detrimental influence on bone augmentation. However, previous studies lack sufficient evidence to guide wound closure after immediate posterior implantation.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Robotic sugarbaker parastomal hernia repair: updated series and outcomes.

Hernia

January 2025

Division of Gastrointestinal and Minimally Invasive Surgery, Department of Surgery, Carolinas Medical Center, 1025 Morehead Medical Drive Suite 300, Charlotte, NC, 28204, USA.

Purpose: To present updated outcomes after previously describing a novel technique for the robotic repair of parastomal hernias.

Methods: Patients who underwent parastomal hernia repair with a robotic Sugarbaker technique at a tertiary hernia center were identified from an institutional database. The approach involves mesh placement in the intraperitoneal or preperitoneal position after closure of the fascial defect.

View Article and Find Full Text PDF

Objective: To confirm the incidence of subcutaneous effusion secondary to cerebrospinal fluid leakage after craniotomy, analyze the risk factors for cerebrospinal fluid leakage leading to subcutaneous effusion, summarize the underlying causes of its occurrence and explore the corresponding treatment strategies.

Methods: A retrospective analysis was conducted on 757 patients who underwent craniotomy at our hospital from January to December 2023. The authors documented the sex, age, surgical characteristics, and history of chronic diseases for all patients, including those who developed subcutaneous effusion secondary to cerebrospinal fluid leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!