A number of intravenous immunoglobulin preparations are stabilized with sugar additives that may lead over time to undesirable glycation reactions especially in liquid formulation. This study aimed to evaluate the reactivity of sugar excipients on such preparations in condition of temperature, formulation and concentration commonly used for pharmaceutical products. Through an innovative LC-MS method reported to characterize post-translational modifications of IgGs Fc/2 fragments, a stability study of IVIg formulated with reducing and non-reducing sugars has been undertaken. The rate of polyclonal IgGs glycation was investigated during 6months at 5, 25, 30 and 40°C. High levels of glycation were observed with reducing sugars such as glucose and maltose in the first months of the stability study from 25°C. Non-reducing sugars presented a low reactivity even at the highest tested temperature (40°C). Furthermore, a site by site analysis was performed by MS/MS to determine the glycation sites which were mainly identified at Lys246, Lys248 and Lys324. This work points out the high probability of glycation reactions in some commercialized products and describes a useful method to characterize IVIg glycated products issued from reducing sugar excipients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2016.03.016 | DOI Listing |
Nat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
Groundnut fodder was utilized as a bioresource for the production of cellulases through solid state fermentation (SSF). Aspergillus unguis was initially grown on modified groundnut fodder for cellulase production and the fodder was hydrolyzed by the crude cellulase extract into fermentable hydrolyzate. The highest titer of Filter paperase (FPase), Carboxymethyl cellulase (CMCase), β-glucosidase, and protein content were found to be 11.
View Article and Find Full Text PDFAAPS J
January 2025
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Chemical Engineering, Indian Institute of Technology Delhi. Electronic address:
Stability of complex biotherapeutics like monoclonal antibodies is paramount for their safe and efficacious use. Excipients are inactive ingredients that are added to the purified product so as to offer it a stable environment. Trehalose dihydrate is a non-reducing sugar that is commonly used as a stabilizing agent in biotherapeutic formulations under liquid and frozen states.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!