Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Candida species account for most invasive fungal infections, and the emergence of fluconazole and caspofungin resistance is problematic. Overcoming resistance with synergism between 2 drugs may be useful. In a 2013 in vitro study, caspofungin plus colistin (polymyxin E) was found to act synergistically against fluconazole-resistant and susceptible Candida albicans isolates. The purpose of our study was to extend this finding by evaluating caspofungin plus polymyxin B for in vitro synergy against fluconazole-resistant Candida glabrata isolates.
Materials And Methods: A total of 7 fluconazole-resistant C. glabrata bloodstream infection isolates were obtained from 2010-2011. Of these, 2 isolates were also resistant to caspofungin. Minimum inhibitory concentrations (MICs) for caspofungin and polymyxin B were determined by Etest and broth microdilution. Clinical and Laboratory Standards Institute breakpoints were used for fluconazole and caspofungin MIC interpretations. No interpretive guidelines exist for testing polymyxin B against C. glabrata. Synergy testing with caspofungin (1 × MIC) and polymyxin B (½MIC) was performed using a modified bacterial Etest synergy method and time-kill assay.
Results: With the Etest synergy method, 4 out of 7 isolates showed in vitro synergy and 1 out of 7 showed additivity. The remaining isolates (both caspofungin resistant) showed indifference. Using the time-kill assay, 1 out of 7 isolates showed synergy, 1 showed additivity and the remaining 5 (including both caspofungin-resistant isolates) showed indifference.
Conclusions: Caspofungin susceptibility may be required for synergism between caspofungin and polymyxin B. Further synergy testing with caspofungin plus polymyxin B and additional fluconazole-resistant C. glabrata isolates should be performed. In vitro synergy/additivity may or may not correlate with in vivo benefit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjms.2015.12.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!