Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201505109DOI Listing

Publication Analysis

Top Keywords

printing conductive
4
conductive complex
4
complex structures
4
structures situ
4
situ generation
4
generation silver
4
silver nanoparticles
4
nanoparticles coupling
4
coupling photoreduction
4
photoreduction metal
4

Similar Publications

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.

View Article and Find Full Text PDF

Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil-Water Separation.

Polymers (Basel)

January 2025

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.

View Article and Find Full Text PDF

This study explores the impact of blending polyethylene terephthalate (PET) with polybutylene terephthalate (PBT) on the thermal, structural, and mechanical properties of 3D-printed materials. Comprehensive analyses, including Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical testing, were conducted to assess the influence of blend composition. FT-IR confirmed that PET and PBT blend physically without transesterification, while TGA showed enhanced thermal stability with increasing PET content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!