AI Article Synopsis

  • Nitrogen fertilization can boost plant growth but must be managed wisely to prevent environmental harm from N loss.
  • A study compared how different planting systems—switchgrass monoculture, a 5-species mix, and an 18-species prairie—reacted to N fertilization over two years.
  • Results showed higher N2O emissions and nitrate levels in the switchgrass, while polycultures had increased productivity with less N loss, demonstrating their favorable response to fertilization compared to monocultures.

Article Abstract

Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3(-)) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha(-1) in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3(-) concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798553PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151919PLOS

Publication Analysis

Top Keywords

cropping systems
12
switchgrass monoculture
12
nitrogen fertilization
8
nutrient management
8
n2o emissions
8
polycultures switchgrass
8
switchgrass
5
fertilization effects
4
productivity
4
effects productivity
4

Similar Publications

An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.

View Article and Find Full Text PDF

Plant diseases constantly threaten crops and food systems, while global connectivity further increases the risks of spreading existing and exotic pathogens. Here, we first explore how an integrative approach involving plant pathway knowledgegraphs, differential gene expression data, and biochemical data informing Raman spectroscopy could be used to detect plant pathways responding to pathogen attacks. The Plant Reactome (https://plantreactome.

View Article and Find Full Text PDF

Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.

View Article and Find Full Text PDF

International Research Initiative on Genomics-guided Sugarcane Breeding.

Mol Plant

January 2025

National Engineering Research Center for Sugarcane, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China. Electronic address:

View Article and Find Full Text PDF

The risk of national food supply disruptions is linked to both domestic production and food imports. But assessments of climate change risks for food systems typically focus on the impacts on domestic production, ignoring climate impacts in supplying regions. Here, we use global crop modeling data in combination with current trade flows to evaluate potential climate change impacts on national food supply, comparing impacts on domestic production alone (domestic production impacts) to impacts considering how climate change impacts production in all source regions (consumption impact).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!