Background: A sustained inflation (SI) facilitates lung aeration, but the most effective pressure and duration are unknown. We investigated the effect of gestational age (GA) and airway liquid volume on the required inflation pressure and SI duration.
Methods: Rabbit kittens were delivered at 27, 29, and 30 d gestation, intubated and airway liquid was aspirated. Either no liquid (control) or 30 ml/kg of liquid was returned to the airways. Lung gas volumes were measured by plethysmography and phase-contrast X-ray-imaging. Starting at 22 cmH2O, airway pressure was increased until airflow commenced and pressure was then held constant. The SI was truncated when 20 ml/kg air had entered the lung and ventilation continued with intermittent positive pressure ventilation (iPPV).
Results: Higher SI pressures and longer durations were required in 27-d kittens compared to 30-d kittens. During iPPV, 27-d kittens needed higher pressures and had lower functional residual capacity (FRC) compared to 30-d kittens. Adding lung liquid increased SI duration, reduced FRC, and increased resistance and pressures during iPPV in 29- and 30-d kittens.
Conclusion: Immature kittens required higher starting pressures and longer SI durations to achieve a set inflation volume. Larger airway liquid volumes adversely affected lung function during iPPV in older but not young kittens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973011 | PMC |
http://dx.doi.org/10.1038/pr.2016.59 | DOI Listing |
Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Introduction: Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is - in addition to its well-established roles in the lung airway and extrapulmonary organs - increasingly recognized as a key regulator of alveolar homeostasis and defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!