AI Article Synopsis

  • Some coatings can make hernia meshes, which are used in surgery, better for the body by helping them work well with cells.
  • This study tested a special coating called GOPS on different types of hernia meshes and found that it helped cells stick better and grow more.
  • The tests showed that the GOPS coating didn’t hurt the cells, and while more research is needed, it seems like a good option for improving medical implants.

Article Abstract

Certain coatings may improve the biocompatibility of hernia meshes. The coating with self-assembled monolayers, such as glycidoxypropyltrimethoxysilane (GOPS) can also improve the materials characteristics of implants. This approach was not yet explored in hernia meshes. It was the aim of this work to clarify if and how hernia meshes with their three-dimensional structure can be coated with GOPS and with which technique this coating can be best characterized. Commercially available meshes made from polypropylene (PP), polyester (PE), and expanded polytetrafluorethylene (ePTFE) have been coated with GOPS. The coatings were analyzed via X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM), and cell proliferation test (mouse fibroblasts). Cell viability and cytotoxicity were tested by MTT test. With the GOPS surface modification, the adherence of mouse fibroblasts on polyester meshes and the proliferation on ePTFE meshes were increased compared to noncoated meshes. Both XPS and CLSM are limited in their applicability and validity due to the three-dimensional mesh structure while CLSM was overall more suitable. In the MTT test, no negative effects of the GOPS coating on the cells were detected after 24 h. The present results show that GOPS coating of hernia meshes is feasible and effective. GOPS coating can be achieved in a fast and cost-efficient way. Further investigations are necessary with respect to coating quality and adverse effects before such a coating may be used in the clinical routine. In conclusion, GOPS is a promising material that warrants further research as coating of medical implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1083-1090, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33653DOI Listing

Publication Analysis

Top Keywords

hernia meshes
20
gops coating
12
coating
9
meshes
9
gops
8
coated gops
8
mouse fibroblasts
8
mtt test
8
hernia
5
vitro analysis
4

Similar Publications

Abdominal PP meshes coated with functional core-sheath biodegradable nanofibers with anticoagulant and antibacterial properties.

Biomater Adv

January 2025

Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France. Electronic address:

Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls.

View Article and Find Full Text PDF

The surgical repair of giant inguinal hernias with loss of domain, defined as the relocation of the majority of the intestine into the hernia sac, poses a significant challenge. In the majority of cases, a combination of different surgical techniques with the placement of multiple meshes is necessary to achieve reduction of such complex hernias. The reduction of chronic giant hernias can increase the risk of abdominal compartment syndrome or cardiopulmonary complications.

View Article and Find Full Text PDF

The Unfulfilled Potential of Synthetic and Biological Hydrogel Membranes in the Treatment of Abdominal Hernias.

Gels

November 2024

Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary.

Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair.

View Article and Find Full Text PDF

Introduction: In laparoscopic inguinal hernia repair (LIHR), fixation means for meshes (FMMs) are commonly used to reduce hernia recurrence risk. Their use may result in post-operative pain (PP) and may even increase surgical time (ST). Recently, self-gripping meshes (SGMs) have been developed, which leave aside fixation devices; they could potentially reduce PP and even decrease ST.

View Article and Find Full Text PDF

Introduction: In inguinal hernia repair, mesh weight and pore size are used to describe the mesh characteristics. One meta-analysis of laparo-endoscopic inguinal hernia repairs identified 12 prospective randomized controlled trials (RCTs) with 2,909 patients who had all been treated with lightweight (≤ 50 g/m²) or heavyweight (> 70 g/m²) meshes. None of the 12 RCTs gave details of the pore size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!