Hippocampal α-synuclein and interneurons in Parkinson's disease: Data from human and mouse models.

Mov Disord

Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain.

Published: July 2016

Background: Dementia is a nonmotor feature of Parkinson's disease, arising around the onset of hippocampal pathology in stage IV of the disease, from where it progress to the isocortex. Differential α-synuclein involvement in hippocampal interneuron populations remains unknown. The objective of this study was to analyze the involvement of α-synuclein in hippocampal interneurons in an α-synucleinopathy mouse model and in the brains of Parkinson's disease patients.

Methods: The distribution of α-synuclein was examined in the dentate gyrus and CA1, CA2, and CA3 fields of the hippocampus in A53T transgenic mice at 16, 30, 43, and 56 weeks and in Parkinson's disease patients at neuropathological stages III, IV, and V. Expression of interneuron markers (mouse: calbindin, calretinin, and somatostatin; human: parvalbumin and somatostatin) were quantified and compared. Coexpression of these markers with α-synuclein was analyzed.

Results: In mice, α-synuclein expression was most concentrated in the granular and polymorphic layers of the dentate gyrus and in the CA2 and CA3 fields. Expression significantly increased at 30 and 43 weeks and then significantly decreased at 56 weeks. In human brains, a significantly higher density of α-synuclein was observed in the CA2. The expression of interneuron markers was, in general, not significantly different between control and transgenic animals, except in calbindin and somatostatin at 43 weeks. The α-synuclein protein colocalized with somatostatin and calbindin in the mouse hippocampus and with parvalbumin in the human hippocampus.

Conclusions: The differential α-synucleinopathy of hippocampal interneuron populations may help in the study of mechanisms of protein aggregation and progression relevant to PD and PD dementia. © 2016 International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.26586DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
16
hippocampal interneuron
8
interneuron populations
8
dentate gyrus
8
ca2 ca3
8
ca3 fields
8
expression interneuron
8
interneuron markers
8
α-synuclein
7
hippocampal
5

Similar Publications

This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!