Gynodioecy, a sexual system where females and hermaphrodites co-occur, is found in << 1% of angiosperm species. To understand why gynodioecy is rare, we need to understand why females are maintained in some lineages, but not in others. We modelled the evolution of gynodioecy in the Lamiaceae, and investigated whether transition rates between gynodioecious and nongynodioecious states varied across the family. We also investigated whether the evolution of gynodioecy was correlated with the evolution of a herbaceous growth form and temperate distribution. Transition rates differed between Lamiaceae subfamilies. In the Nepetoideae, there were many transitions towards gynodioecy (n = 11), but also many reversions to nongynodioecy (n = 29). In addition, a herbaceous growth form, but not a temperate distribution, affected the rate of transitions both towards and away from gynodioecy; transitions towards gynodioecy occurred ˜16 times more frequently and transitions away from gynodioecy occurred ˜11 times more frequently in herbaceous lineages than in woody lineages. Within the Lamiaceae, lineages in which gynodioecy has frequently evolved also have a high rate of reversions to the nongynodioecious state. Consequently, to understand why gynodioecy is rare, we need to understand why sexual systems are more evolutionarily labile in some lineages than in others.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.13926 | DOI Listing |
Am J Bot
November 2024
Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
Premise: Angiosperms range in sexual system from hermaphroditism through gynodioecy and androdioecy to dioecy. Trioecy, where females and males coexist with hermaphrodites, is rare. Recently, trioecy was documented in hexaploid populations of the wind-pollinated herb Mercurialis annua in Spain.
View Article and Find Full Text PDFAm J Bot
May 2024
Univ. Bordeaux, INRAE, Biogeco, Cestas, 33610, France.
Premise: Gynodioecy is a rare sexual system in which two genders (sensu Lloyd, 1980), cosexuals and females, coexist. To survive, female plants must compensate for their lack of siring capacity and male attractiveness. In European chestnut (Castanea sativa), an outcrossing tree, self-pollination reduces fruit set in cosexual individuals because of late-acting self-incompatibility and early inbreeding depression.
View Article and Find Full Text PDFBMC Res Notes
May 2023
Department of Botany, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
Objective: Sidalcea is a genus of flowering plants restricted to the west coast of North America, commonly known as checkermallows. Remarkably, of the ~ 30 recognized species, 16 are of conservation concern (vulnerable, imperilled or critically imperilled). To facilitate biological studies in this genus, and in the wider Malvaceae, we have sequenced the whole plastid genome of Sidalcea hendersonii.
View Article and Find Full Text PDFBMC Plant Biol
March 2022
Department of Biology, San Diego State University, San Diego, USA.
Background: In certain unisexual flowers, non-functional sexual organs remain vestigial and unisexuality can be overlooked leading to the ambiguous description of the sexual systems. Therefore, to accurately describe the sexual system, detailed morphological and developmental analyses along with experimental crosses must be performed. Cylindropuntia wolfii is a rare cactus endemic to the Sonoran Desert in southern California and northern Baja California that was described as gynodioecious by morphological analysis.
View Article and Find Full Text PDFBioessays
April 2022
Department of Biological Sciences, Kent State University, Kent, Ohio, USA.
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!