Dengue virus (DENV) infections are increasing with respect to incidence and severity in the Central Province of Sri Lanka. The objective of this study was to define the clinical, immunological, and virological profiles of patients admitted to the General Hospital, Kandy with clinically apparent dengue. Demographic, clinical, hematological parameters, liver enzymes (ALT and AST), and blood samples were collected from 292 patients with fever <5 days post onset and fulfilling the WHO criteria for the diagnosis of dengue fever/dengue hemorrhagic fever (DF/DHF). Samples were analyzed for, anti-DENV IgM, IgG, and DENV nucleic acid. Myalgia was the commonest complaint by 65% of the patients. Packed cell volume was >45% in 27% of the patients while 42.12% had reduced platelets and 62.67% had reduced white blood cell counts. In contrast to other studies, positive tourniquet test (PTT) and petechiae were not major indicators of DENV infection or severity of the disease. Clinical profiles were significantly different between DF and DHF/DSS and showed many similarities to that reported elsewhere. Altogether, 43 patients (14.73%) were viremic as detected by RT-PCR; 181 patients (62%) were positive for anti-DENV IgM, and 245 (84%) patients were positive for anti-DENV IgG. In combination, anti-DENV IgM and RT-PCR assays detected 224 (77.5%) of DENV infected cases, thus improving the DENV diagnosis rate. Hence, the diagnostic utility of PTT, anti-DENV IgM/IgG serology, or RT-PCR used alone in the early phase of illness is low in Sri Lanka but the diagnostic value can be improved by a combination of serology and RT-PCR. J. Med. Virol. 88:1703-1710, 2016. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.24525 | DOI Listing |
J Membr Biol
January 2025
School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Health Institute, National Environment Agency, Singapore, Singapore.
Globally, multiple trials have successfully demonstrated the effectiveness of novel tools, such as the sterile and incompatible insect techniques, in suppressing Aedes aegypti populations. However, there is concern that Aedes albopictus, another arbovirus-competent vector, may occupy the niches vacated by Ae. aegypti in areas where these species occur in sympatry.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
Dengue remains the most rapidly advancing vector-borne disease in the world, and while the disease burden is predominantly in low-to-middle-income countries, the association with poverty remains in question. Consequently, a study was undertaken to evaluate the prevalence of anti-dengue antibodies among individuals residing in the People's Housing Program (PPR), a government-sponsored low-cost housing initiative targeting low-income earners. This type of public housing often faces challenges, including substandard housing facilities.
View Article and Find Full Text PDFBackground: The interactions between virus and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation and healing, which is crucial to resolving infection without destructive immunopathologies.
Summary: Early innate immune responses are key to the generation of a beneficial or detrimental immune response.
Curr Pharm Biotechnol
January 2025
Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!