Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201501364 | DOI Listing |
Food Chem
December 2024
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, 230036, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062, China. Electronic address:
An applicable and highly efficient methodology for the preparation of medium- and long-chain triglycerides (MLCTs) via the enzymatic transesterification of coconut oil with long-chain fatty acid triglycerides, named camellia oil, olive oil, linseed oil, algal oil, and rapeseed oil, respectively, has been proposed. The novel system achieved equilibrium in 5 min, and the MLCT yield ranged from 78.7 to 83.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China. Electronic address:
Nitrogen (N) is crucial for plant growth, available primarily as nitrate (NO) and ammonium (NH). However, its presence in soil is often limited, necessitating strategies to augment N availability. This study delves into the enigmatic interplay between NO and NH in fostering the growth of Brassica napus, an important oil crop worldwide.
View Article and Find Full Text PDFFood Chem
December 2024
Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland.
The effect of ozone treatment on the sensory quality, aroma compounds, phytosterols, and phytosterol oxidation products (POP) in stored plant oils was studied. Cold-pressed flaxseed, cold-pressed rapeseed, and refined rapeseed oils were treated with ozone, air, and nitrogen, then subjected to accelerated storage at 60 °C for 6 days. The sensory evaluation revealed that ozone significantly influenced the sensory profile, with notable cucumber and green-grassy aromas.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
Rapeseed (Brassica napus L.) possesses substantial economic value as an oil, vegetable, and forage crop, while also exhibiting notable ornamental characteristics. Recent advances in flower colour breeding have significantly enhanced the visual appeal of rapeseed, with anthocyanins identified as the primary contributor to the development of red, purple, and pink flowers.
View Article and Find Full Text PDFMetab Brain Dis
December 2024
Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
The common practice of reusing deep-fried oil may derange the ability of the brain to counter free radicals and inflammatory responses and can adversely alter neurobehavioral changes. In this study, we elucidated the modulatory potentials of Lactobacillus fermentum MCC2760 (LF) on neurobehavioral changes induced by dietary intake of oxidized oils. Female Wistar rats were fed with AIN-76 diets containing native sunflower oil (N-SFO), native canola oil (N-CNO), heated sunflower oil (H-SFO), heated canola oil (H-CNO), heated sunflower oil with probiotic (H-SFO + LF) or heated canola oil with probiotic (H-CNO + LF} for 60 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!