Opioids induce rewarding and locomotor effects by inhibiting rostromedial tegmental GABA neurons that express μ-opioid and nociceptin receptors. These GABA neurons then strongly inhibit dopamine neurons. Opioid-induced reward, locomotion and dopamine release also depend on pedunculopontine and laterodorsal tegmental cholinergic and glutamate neurons, many of which project to and activate ventral tegmental area dopamine neurons. Here we show that laterodorsal tegmental and pedunculopontine cholinergic neurons project to both rostromedial tegmental nucleus and ventral tegmental area, and that M4 muscarinic receptors are co-localized with μ-opioid receptors associated with rostromedial tegmental GABA neurons. To inhibit or excite rostromedial tegmental GABA neurons, we utilized adeno-associated viral vectors and DREADDs to express designed muscarinic receptors (M4D or M3D respectively) in GAD2::Cre mice. In M4D-expressing mice, clozapine-N-oxide increased morphine-induced, but not vehicle-induced, locomotion. In M3D-expressing mice, clozapine-N-oxide blocked morphine-induced, but not vehicle-induced, locomotion. We propose that cholinergic inhibition of rostromedial tegmental GABA neurons via M4 muscarinic receptors facilitates opioid inhibition of the same neurons. This model explains how mesopontine cholinergic systems and muscarinic receptors in the rostromedial tegmental nucleus and ventral tegmental area are important for dopamine-dependent and dopamine-independent opioid-induced rewards and locomotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.13237 | DOI Listing |
Int J Mol Sci
December 2024
Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. However, the core biology of the disorder that leads to the hypofunctioning of the cerebral dopaminergic network requires further elucidation. We investigated midbrain synaptic changes in male rats exposed to repeated hypoxia during the equivalent of extreme prematurity, which is a new animal model of the hyperactive/impulsive presentation of ADHD.
View Article and Find Full Text PDFCells
November 2024
Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy.
The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes.
View Article and Find Full Text PDFJ Neurosci
September 2024
CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
The lateral habenula (LHb) has emerged as a pivotal brain region implicated in depression, displaying hyperactivity in human and animal models of depression. While the role of LHb efferents in depressive disorders has been acknowledged, the specific synaptic alterations remain elusive. Here, employing optogenetics, retrograde tracing, and ex vivo whole-cell patch-clamp techniques, we investigated synaptic transmission in male mice subjected to chronic social defeat stress (CSDS) at three major LHb neuronal outputs: the dorsal raphe nucleus (DRN), the ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg).
View Article and Find Full Text PDFNeuropharmacology
November 2024
Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA. Electronic address:
Chronic ethanol exposure produces neuroadaptations in the medial prefrontal cortex (mPFC) that are thought to facilitate maladaptive behaviors that interfere with recovery from alcohol use disorder. Despite evidence that different cortico-subcortical projections play distinct roles in behavior, few studies have examined the physiological effects of chronic ethanol at the circuit level. The rostromedial tegmental nucleus (RMTg) is functionally altered by chronic ethanol exposure.
View Article and Find Full Text PDFeNeuro
July 2024
Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104.
Midbrain dopamine neurons receive convergent synaptic input from multiple brain areas, which perturbs rhythmic pacemaking to produce the complex firing patterns observed in vivo. This study investigated the impact of single and multiple inhibitory inputs on ventral tegmental area (VTA) dopamine neuron firing in mice of both sexes using novel experimental measurements and modeling. We first measured unitary inhibitory postsynaptic currents produced by single axons using both minimal electrical stimulation and minimal optical stimulation of rostromedial tegmental nucleus and ventral pallidum afferents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!