Reactive oxygen species (ROS) produced by endothelial cells and macrophages play important roles in atherogenesis because they promote the formation of oxidized low-density lipoproteins (oxLDL). Extracellular-superoxide dismutase (EC-SOD) is mainly produced by vascular smooth muscle cells (VSMCs), is secreted into the extracellular space, and protects cells from the damaging effects of the superoxide anion. Thus, the expression of EC-SOD in VSMCs is crucial for protecting cells against atherogenesis; however, oxLDL-induced changes in the expression of EC-SOD in VSMCs have not yet been examined. We herein showed that oxLDL decreased EC-SOD mRNA and protein levels by binding to lectin-like oxidized LDL receptor-1 (LOX-1). Moreover, we demonstrated the significant role of mitogen-activated protein kinase (MEK)/extracellular-regulated protein kinase (ERK) signaling in oxLDL-elicited reductions in the expression of EC-SOD and proliferation of VSMCs. The results obtained with the FCS treatment indicate that oxLDL-elicited reductions in the expression of EC-SOD are related to the proliferation of VSMCs. We herein showed for the first time that luteolin, a natural product, restored oxLDL-induced decreases in the expression of EC-SOD and proliferation of VSMCs. Collectively, the results of the present study suggest that oxLDL accelerates the development of atherosclerosis by suppressing the expression of EC-SOD and also that luteolin has potential as a treatment for atherosclerosis. J. Cell. Biochem. 117: 2496-2505, 2016. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.25542 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!