Production of succinic acid by metabolically engineered microorganisms.

Curr Opin Biotechnol

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. Electronic address:

Published: December 2016

AI Article Synopsis

  • Succinic acid (SA) is a key bio-based chemical with diverse applications, prompting extensive research into its economical production.
  • Various microbial strains, like Saccharomyces cerevisiae and Escherichia coli, have been engineered through metabolic strategies to enhance SA production, focusing on metrics like titer, yield, and productivity.
  • The review analyzes successful commercial processes and offers insights into future developments in the bio-based production of succinic acid.

Article Abstract

Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2016.02.034DOI Listing

Publication Analysis

Top Keywords

succinic acid
8
bio-based production
8
metabolic engineering
8
production succinic
4
acid metabolically
4
metabolically engineered
4
engineered microorganisms
4
microorganisms succinic
4
acid recognized
4
recognized bio-based
4

Similar Publications

Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO and NaCO as the predominant alkaline salts (pH ≥ 9.

View Article and Find Full Text PDF

The genus Euphorbia, belonging to the family Euphorbiaceae, represents a significant ethnobotanical heritage due to the diverse bioactive properties exhibited. In this study, the phytochemical composition and biological activities of latex and aerial parts of the water extract of Euphorbia gaillardotii were investigated. Phytochemical analyses were performed using gas chromatography-mass spectrometry and high-performance liquid chromatography techniques and total antioxidants, phenolics, sugars, organic acids, and aroma components were quantitatively determined.

View Article and Find Full Text PDF

Background: Burn-hemorrhagic shock combined injury, a severe condition causing complex stress responses and metabolic disturbances that significantly affect clinical outcomes in both military and civilian settings, was modeled in swine to investigate the associated metabolomic and proteomic changes and identify potential biomarkers for disease prognosis.

Methods: Eight clean-grade adult male Landrace pigs (4-5 months, average weight 60-70 kg) were used to model burn-hemorrhagic shock combined injury. Serum samples collected at 0 h and 2 h post-injury were analyzed using metabolomic and proteomic measurements.

View Article and Find Full Text PDF

Construction of an Efficient -Succinyl--homoserine Producing Cell Factory and Its Application for Coupling Production of -Methionine and Succinic Acid.

J Agric Food Chem

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

-Succinyl--homoserine (OSH) is an important C4 platform compound with broad applications. Its green and efficient production is receiving increasing attention. Herein, the OSH producing chassic cell was constructed by deleting the transcriptional negative regulation factor, blocking the OSH consumption pathway, and inhibiting the competitive bypass pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!