Relative maturity and the development of immunity to gastrointestinal nematodes in sheep: an overlooked paradigm?

Parasite Immunol

Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.

Published: May 2016

Sheep display considerable variation in both the timing and magnitude of development of immunity to gastrointestinal nematodes (GIN). Onset of immunity is dependent on a number of factors, including antigenic stimulus, nutrition supply, age and size of the animals, the latter of which are confounded. Here, we review the factors associated with the development of immunity to GIN in sheep, particularly in the context of the role that relative maturity may have through applying the rules of genetic size scaling based on examples from published literature. Comparing animals based on their metabolic age, rather than chronological age, may provide an explanation for the timing of immune development and may reduce the variation in immune development that frequently is observed both between and within breeds. Further, this approach may help explain the phenotypic differences in animal performance between animals of varying immunological capacity to GIN through influences on mature body weight. As such, when considering factors influencing immune development to GIN, physiological age or relative maturity may be considered an overlooked paradigm. We propose it may be worthwhile to consider metabolic age when comparing the immune competence of animals to ensure the subjects are at an analogous stage of physiological development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pim.12313DOI Listing

Publication Analysis

Top Keywords

relative maturity
12
development immunity
12
immune development
12
immunity gastrointestinal
8
gastrointestinal nematodes
8
metabolic age
8
development
7
age
5
maturity development
4
immunity
4

Similar Publications

Opportunities and challenges of bacterial extracellular vesicles in regenerative medicine.

J Nanobiotechnology

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.

Extracellular vesicles (EVs) are membrane-bound vesicles that are shed or secreted from the cell membrane and enveloped by a lipid bilayer. They possess stability, low immunogenicity, and non-cytotoxicity, exhibiting extensive prospects in regenerative medicine (RM). However, natural EVs pose challenges, such as insufficient targeting capabilities, potential biosafety concerns, and limited acquisition pathways.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development.

View Article and Find Full Text PDF

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.

View Article and Find Full Text PDF

Background: Disrupted balance between amyloidogenic and non-amyloidogenic pathways leads to cognitive decline in Alzheimer's disease (AD). Evidence suggests vitamin A (VA) supplementation favors the non-amyloidogenic pathway through upregulation of α-secretase. Originally used to map embryonic retinoic acid (RA) signaling, RARE-LacZ mice possess multiple LacZ genes controlled by retinoic acid response elements (RAREs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!