Multifunctional materials have attracted many interests from both fundamental and practical aspects, such as field-effect transistor, electric protection, transducers and biosensor. Here we demonstrated the first superior hydrophobic piezoelectric surface based on the polymer blend of polyvinylidene fluoride (PVDF)-polyacrilonitrile (PAN) assisted with functionalized multiwalled nanotubes (MWNTs), by a modified electrospinning method. Typically the β-phase polyvinylidene fluoride (PVDF) was considered as the excellent piezoelectric and pyroelectric materials. However, polar β-phase of PVDF exhibited a natural high hydrophilicity. As a well-known fact, the wettability of the surface is dominated by two major factors: surface composition and surface roughness. The significant conversions derived by the incorporation of MWNTs, from nonpolar α-phase to highly polar β-phase of PVDF, were confirmed by FTIR. Meanwhile, the effects of MWNTs on the improvement of the roughness and the hydrophobicity of polymer blend were evaluated by atomic force microscopy (AFM) and contact angle (CA). Molar free energy of wetting of the polymer nanocomposite decreases with increasing the wt.% of MWNTs. All molar free energy of wetting of PVDF-PAN/MWNTs were negative, which means the non-wettability of film. The combination of surface roughness and low-surface-energy modification in nanostructured composites leads to high hydrophobicity. Particularly, fabrication of superior hydrophobic surfaces not only has fundamental interest but also various possible functional applications in micro- and nano-materials and devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792282 | PMC |
http://dx.doi.org/10.1039/C5RA11584A | DOI Listing |
Int J Biol Macromol
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China. Electronic address:
Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods.
View Article and Find Full Text PDFACS Nano
January 2025
Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Gynecology & Obstetrics, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
Regeneration of the injured endometrium, particularly the functional layer, is crucial for the prevention of uterine infertility. At present, clinical treatment using sodium hyaluronate hydrogel injection is limited by its relatively low fluidity, short-term retention, and insufficient bioactive ingredients, so it is necessary to develop an advanced healing-promoting hydrogel. The modulation of the microenvironment by presents a bioactive component that can facilitate the regeneration of the functional layer.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
The development of green and easily regulated amphiphilic particles is crucial for advancing Pickering emulsion catalysis. In this study, lignin particles modified via sulfobutylation were employed as solid emulsifiers to support Pd nanoparticles (NPs), thereby enhancing the catalytic efficiency of biphasic reactions. Sulfobutylation of lignin effectively adjusted the hydrophilic-hydrophobic balance, resulting in controlled emulsion types and droplet sizes.
View Article and Find Full Text PDFLangmuir
January 2025
Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China.
The sulfidization-xanthate flotation process has been used commercially with some success in recovering azurite, but it remains unsatisfactory in terms of the environmental impact and flotation index. To remediate these deficiencies, this study evaluated the flotation performance of sodium trithiocarbonate (NaCS) as a green sulfidizing agent for azurite. Flotation test results demonstrated that NaCS has the same efficacy as sodium sulfide but markedly superior activation performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
Aerogels are regarded as the next generation of thermal insulators; however, conventional aerogels suffer from issues such as brittleness, low moisture resistance, and a complex production process. Subnanowires (SNWs) are emerging materials known for their exceptional flexibility, toughness, intrinsic hydrophobicity, and gelling capabilities, making them ideal building blocks for flexible, tough, hydrophobic, and thermally insulating aerogels. Herein, we present a simple and scalable strategy to construct SNW aerogels by freeze-drying hydroxyapatite (HAP) SNW dispersions in cyclohexane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!