Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laparoscopic and minimally-invasive robotic access has transformed the delivery of urological surgery. While associated with numerous desirable outcomes including shorter post-operative stay and faster return to preoperative function, these techniques have also been associated with increased morbidity such as reduced renal blood flow and post-operative renal dysfunction. The mechanisms leading to these renal effects complex and multifactorial, and have not been fully elucidated. However they are likely to include direct effects from raised intra-abdominal pressure, and indirect effects secondary to carbon dioxide absorption, neuroendocrine factors and tissue damage from oxidative stress. This review summarises these factors, and highlights the need for further work in this area, to direct novel therapies and guide alterations in technique with the aim of reducing renal dysfunction post-laparoscopic and robotic surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789951 | PMC |
http://dx.doi.org/10.1159/000442842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!