C9orf72 is required for proper macrophage and microglial function in mice.

Science

Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.

Published: March 2016

Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120541PMC
http://dx.doi.org/10.1126/science.aaf1064DOI Listing

Publication Analysis

Top Keywords

c9orf72
10
c9orf72 required
8
microglial function
8
c9orf72 expansion
8
expansion carriers
8
myeloid cells
8
required proper
4
proper macrophage
4
macrophage microglial
4
function
4

Similar Publications

A significantly diverse clinical presentation of amyotrophic lateral sclerosis (ALS), even in its best-studied familial form, continues to hinder current efforts to develop effective disease-modifying drugs for the cure of this rapidly progressive, fatal neuromuscular disease. We have previously shown that clinical heterogeneity of sporadic ALS (sALS) could be explained, at least in part, by its polygenic nature as well as by the presence of mutated genes linked to non-ALS neurological diseases and genes known to mediate ALS-related pathologies. We hypothesized that a similar genetic framework could also be present in patients with familial ALS (fALS).

View Article and Find Full Text PDF

C9orf72 role in myeloid cells: new perspectives in the investigation of the neuro-immune crosstalk in amyotrophic lateral sclerosis and frontotemporal dementia.

Ann Transl Med

December 2024

Department of Neuroscience, Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.

View Article and Find Full Text PDF

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain.

Nat Genet

January 2025

Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.

Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.

View Article and Find Full Text PDF

C9ORF72 poly-PR induces TDP-43 nuclear condensation via NEAT1 and is modulated by HSP70 activity.

Cell Rep

January 2025

Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:

The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!