AI Article Synopsis

  • The enzyme NosL converts L-tryptophan into 3-methylindolic acid, a key component for producing the antibiotic nosiheptide.
  • Researchers used electron paramagnetic resonance spectroscopy to study radical intermediates and found that NosL operates through a carboxyl fragment migration mechanism, not the previously suggested fragmentation-recombination mechanism.
  • The study shows that subtle movements in NosL's active site allow for fine-tuned radical chemistry, leading to the specific disruption of the Cα-C bond, demonstrating an evolutionary adaptation in protein structure for new enzyme functions.

Article Abstract

The radical S-adenosyl-L-methionine tryptophan lyase NosL converts L-tryptophan into 3-methylindolic acid, which is a precursor in the synthesis of the thiopeptide antibiotic nosiheptide. Using electron paramagnetic resonance spectroscopy and multiple L-tryptophan isotopologues, we trapped and characterized radical intermediates that indicate a carboxyl fragment migration mechanism for NosL. This is in contrast to a proposed fragmentation-recombination mechanism that implied Cα-Cβ bond cleavage of L-tryptophan. Although NosL resembles related tyrosine lyases, subtle substrate motions in its active site are responsible for a fine-tuned radical chemistry, which selects the Cα-C bond for disruption. This mechanism highlights evolutionary adaptation to structural constraints in proteins as a route to alternative enzyme function.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aad8995DOI Listing

Publication Analysis

Top Keywords

radical s-adenosyl-l-methionine
8
s-adenosyl-l-methionine tryptophan
8
tryptophan lyase
8
fine-tuning radical-based
4
radical-based reaction
4
radical
4
reaction radical
4
lyase radical
4
lyase nosl
4
nosl converts
4

Similar Publications

Peptide cyclization is a defining feature of many bioactive molecules, particularly in the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Although enzymes responsible for N- to C-terminal macrocyclization, lanthipeptide formation or heterocycle installation have been well documented, a diverse array of cyclases have been discovered that perform crosslinking of aromatic side chains. These enzymes form either biaryl linkages between two aromatic amino acids or a crosslink between one aliphatic amino acid and one aromatic amino acid.

View Article and Find Full Text PDF

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

Structural Evidence for DUF512 as a Radical -Adenosylmethionine Cobalamin-Binding Domain.

ACS Bio Med Chem Au

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Cobalamin (Cbl)-dependent radical -adenosylmethionine (SAM) enzymes constitute a large subclass of radical SAM (RS) enzymes that use Cbl to catalyze various types of reactions, the most common of which are methylations. Most Cbl-dependent RS enzymes contain an N-terminal Rossmann fold that aids Cbl binding. Recently, it has been demonstrated that the methanogenesis marker protein 10 (Mmp10) requires Cbl to methylate an arginine residue in the α-subunit of methyl coenzyme M reductase.

View Article and Find Full Text PDF

Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.

Biochemistry

December 2024

Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States.

Radical -adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings.

View Article and Find Full Text PDF

Dynobactins are recently discovered ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotics that selectively kill Gram-negative pathogens by inhibiting the β-barrel assembly machinery (Bam) located on their outer membranes. Such activity of dynobactins derives from their unique cross-links between Trp1-Asn4 and His6-Tyr8. In particular, the His6-Tyr8 cross-link is formed between N of His6 and C of Tyr8, an unprecedented type of cross-link in RiPP natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!