The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported tunneling motions in water clusters, the geared motion involves the concerted breaking of two hydrogen bonds. Similar types of motion may be feasible in interfacial and confined water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aae0012 | DOI Listing |
Curr Res Microb Sci
November 2024
Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
Chitosan is a promising biopolymer with wide range of applications. It is the deacetylated product of chitin. Commercially, it is produced from chitin via a harsh thermochemical process that has several shortcomings and heterogenous deacetylation product.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
School of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
While cobalt metal is recognized as a versatile catalyst in various chemical reactions, such as Fischer-Tropsch synthesis, limited attention has been paid to understanding the detailed adsorptive interactions between water molecules and cobalt metal. In this study, we investigated the adsorption of water molecules on Co(0001) at 100 K using infrared reflection adsorption spectroscopy and low-energy electron diffraction. We experimentally revealed, for the first time, that DO adsorbed intact on the Co(0001) surface forms hexamer islands with coexisting D-up and D-down geometries, in line with the "ice bilayer" model.
View Article and Find Full Text PDFNat Commun
November 2024
Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
The cryo-electron microscopy (cryoEM) method has enabled high-resolution structure determination of numerous biomolecules and complexes. Nevertheless, cryoEM sample preparation of challenging proteins and complexes, especially those with low abundance or with preferential orientation, remains a major hurdle. We developed an affinity-grid method employing monodispersed single particle streptavidin on a lipid monolayer to enhance particle absorption on the grid surface and alleviate sample exposure to the air-water interface.
View Article and Find Full Text PDFNat Commun
November 2024
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany.
Bacterial ice nucleating proteins (INPs) are exceptionally effective in promoting the kinetically hindered transition of water to ice. Their efficiency relies on the assembly of INPs into large functional aggregates, with the size of ice nucleation sites determining activity. Experimental freezing spectra have revealed two distinct, defined aggregate sizes, typically classified as class A and C ice nucleators (INs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!