Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum.

FEMS Microbiol Lett

Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA

Published: April 2016

While extensively studied in several model organisms, the role of small, non-coding RNAs in the stress response remains largely unexplored in Clostridium organisms. About 100 years after the first industrial Acetone-Butanol-Ethanol fermentation process, based on the Weizmann Clostridium acetobutylicum strain, strain tolerance to butanol remains a crucial factor limiting the economics of the process. Several studies have examined the response of this organism to metabolite stress, and several genes have been engaged to impart enhanced tolerance, but no sRNAs have yet been directly engaged in this task. We show that the two stress-responsive sRNAs, 6S and tmRNA, upon overexpression impart tolerance to butanol as assessed by viability assays under process-relevant conditions. 6S overexpression enhances cell densities as well as butanol titres. We discuss the likely mechanisms that these two sRNAs might engage in this tolerance phenotype. Our data support the continued exploration of sRNAs as a basis for engineering enhanced tolerance and enhanced solvent production, especially because sRNA-based strategies impose a minimal metabolic burden on the cells.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnw063DOI Listing

Publication Analysis

Top Keywords

small non-coding
8
non-coding rnas
8
clostridium acetobutylicum
8
tolerance butanol
8
enhanced tolerance
8
tolerance
6
overexpression stress-responsive
4
stress-responsive small
4
rnas tmrna
4
tmrna imparts
4

Similar Publications

hsa-miR-548d-3p: a potential microRNA to target nucleocapsid and/or capsid genes in multiple members of the Flaviviridae family.

Front Bioinform

January 2025

Hakim's Lab, Department of Biology, School of STEM, Diné College, Tuba City, AZ, United States.

Introduction: Flaviviridae comprise a group of enveloped, positive-stranded RNA viruses that are mainly transmitted through either mosquitoes or tick bites and/or contaminated blood, blood products, or other body secretions. These viruses cause diseases ranging from mild to severe and are considered important human pathogens. MicroRNAs (miRNAs) are non-coding molecules involved in growth, development, cell proliferation, protein synthesis, apoptosis, and pathogenesis.

View Article and Find Full Text PDF

Background: Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis.

View Article and Find Full Text PDF

FishPi: a bioinformatic prediction tool to link piRNA and transposable elements.

Mob DNA

January 2025

School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.

Background: Piwi-interacting RNAs (piRNA)s are non-coding small RNAs that post-transcriptionally affect gene expression and regulation. Through complementary seed region binding with transposable elements (TEs), piRNAs protect the genome from transposition. A tool to link piRNAs with complementary TE targets will improve our understanding of the role of piRNAs in genome maintenance and gene regulation.

View Article and Find Full Text PDF

Augmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.

View Article and Find Full Text PDF

Technical considerations and review of urinary microRNAs as biomarkers for chronic kidney disease in dogs and cats.

Vet Clin Pathol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that play a crucial role in gene regulation, making them potential biomarkers for various diseases. In the field of veterinary medicine, there is a growing interest in exploring the diagnostic and therapeutic potential of miRNAs in kidney diseases affecting dogs and cats. This review focuses on the use of urinary miRNAs as biomarkers for chronic kidney disease (CKD) in these companion animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!