Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application.

Food Chem

State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China. Electronic address:

Published: August 2016

The aim of the study is to prepare co-surfactant free microalgal oil microemulsions and investigate their properties as well as processing stability for food application. The physicochemical characteristics of the microemulsions were investigated by dynamic light scattering (DLS), turbidity, conductivity, rheological measurements and transmission electron microscopy (TEM). Within the microemulsion region, when the surfactant to oil ratio was 9:1, the hydrodynamic diameter (Dh) was 18nm; when the surfactant to oil ratio was 7.5:1, the hydrodynamic diameter (Dh) was 50nm. Rheological studies proved that the microemulsion system was a pseudoplastic fluid, which followed a shear thinning flow behavior. The loss rate of docosahexaenoic acid (DHA) was less than 5%wt after ultra high temperature (UHT) and high temperature short time (HTST) thermal treatments. A high content of CaCl2 (10.0%wt) could not destroy the microemulsion system, and it could be stored at 4°C for two years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.01.073DOI Listing

Publication Analysis

Top Keywords

co-surfactant free
8
food application
8
surfactant oil
8
oil ratio
8
hydrodynamic diameter
8
microemulsion system
8
high temperature
8
free microemulsions
4
microemulsions preparation
4
preparation characterization
4

Similar Publications

The purpose of this review is to focus on the Self-Nanoemulsifying Drug Delivery System (SNEDDS) as an effective nanocarrier framework for permeability modulating approaches (PMA) of BCS class-III drugs and its challenges. Present review updates the recent trends in the SNEDDS research where it was employed as a cargo carrier for PMA and challenges. Patient compliance, ease of administration and non-invasiveness mode are non-trivial aspects in the oral administration of drugs.

View Article and Find Full Text PDF

Introduction: Frankincense has demonstrated promising anticancer activity. However, its conventional delivery methods face significant challenges due to limited oral bioavailability. To address these limitations, this study focuses on developing optimized nanoemulsions (NEs) of Frankincense oil (FO) to enhance its therapeutic efficacy.

View Article and Find Full Text PDF

Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.

Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.

View Article and Find Full Text PDF

Pomegranate (Punica granatum) is a tree of the Punicaceae family that is widespread all over the world and has several types and therapeutic uses. The current study aimed to investigate the phytochemical compounds by GC analysis and carried out physical characterization of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.

View Article and Find Full Text PDF

This study aimed to develop microemulsions (MEs) containing α-bisabolol for the topical treatment of cutaneous leishmaniasis (CL). Initially, pseudoternary phase diagrams were developed using α-bisabolol as the oil phase, Eumulgin® CO 40 as the surfactant, Polymol® HE as the co-surfactant, and distilled water as the aqueous phase. Two transparent liquid systems (TLS) containing 5% of α-bisabolol were selected and characterized (F5E25 and F5EP25).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!