(1)H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice.

Food Chem

Departamento de Tecnologia de Alimentos (DETAL), Universidade Federal do Ceará, Campus do Pici, Bloco 858, CEP 60440-900 Fortaleza-CE, Brazil.

Published: August 2016

This study evaluated the effect of atmospheric cold plasma and ozone treatments on the key compounds (sugars, amino acids and short chain organic acids) in orange juice by NMR and chemometric analysis. The juice was directly and indirectly exposed to atmospheric cold plasma field at 70kV for different treatment time (15, 30, 45 and 60sec). For ozone processing different loads were evaluated. The Principal Component Analysis shown that the groups of compounds are affected differently depending on the processing. The ozone was the processing that more affected the aromatic compounds and atmospheric cold plasma processing affected more the aliphatic compounds. However, these variations did not result in significant changes in orange juice composition as a whole. Thus, NMR data and chemometrics were suitable to follow quality changes in orange juice processing by atmospheric cold plasma and ozone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.02.121DOI Listing

Publication Analysis

Top Keywords

orange juice
16
atmospheric cold
16
cold plasma
16
plasma ozone
8
ozone processing
8
changes orange
8
processing
6
juice
5
nmr spectroscopy
4
spectroscopy chemometrics
4

Similar Publications

Background: Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Fungi associated with orange juice production and assessment of adhesion ability and resistance to sanitizers.

Int J Food Microbiol

December 2024

Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil. Electronic address:

Orange juice is widely consumed worldwide due to its sensory and nutritional characteristics. This beverage is susceptible to contamination by acidic-tolerant microorganisms due to its low pH, especially filamentous fungi and yeasts. To minimize fungal spoilage, companies usually submit juice to thermal treatments; sanitizers are also applied on surfaces to maintain the microbiological quality.

View Article and Find Full Text PDF

is one of the most dangerous and contagious foodborne pathogens, posing a significant threat to public health and food safety. In this study, we developed a click chemistry-based fluorescence biosensing platform for highly sensitive detection of () by integrating the -cleavage activity of CRISPR/Cas12a with the CLICK17-mediated copper(II)-dependent azide-alkyne cycloaddition (Cu(II)AAC) click reaction. Herein, CLICK-17 can provide binding sites for Cu ions and high redox stability for one or much catalytically vital Cu within its active sites, which facilitate the click reaction.

View Article and Find Full Text PDF

Chitosan as a fluorescent probe for the detection of the AIE-active food colorant quinoline yellow.

Anal Methods

December 2024

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China.

The greenish-yellow synthetic dye quinoline yellow (Qy) is widely used in the food and pharmaceutical industries. However, this dye may lead to health and environmental problems. Therefore, investigating how Qy interacts with biological macromolecules is of great interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!