As stated by the prevailing amyloid cascade hypothesis, Alzheimer's disease (AD) is caused by the aggregation and cerebral deposition of long amyloid-β peptide (Aβ) species, which are released from a C-terminal amyloid precursor protein fragment by γ-secretase. Mutations in its catalytic subunit presenilin-1 (PS1) increase the Aβ42 to Aβ40 ratio and are the major cause of familial AD (FAD). An opposing hypothesis states that loss of essential presenilin functions underlies the disease. A major argument for this hypothesis is the observation that the nearly inactive PS1 L435F mutant, paradoxically, causes FAD We now show that the very little Aβ generated by PS1 L435F consists primarily of Aβ43, a highly amyloidogenic species which was overlooked in previous studies of this mutant. We further demonstrate that the generation of Aβ43 is not due to a trans-dominant effect of this mutant on WT presenilin. Furthermore, we found Aβ43-containing plaques in brains of patients with this mutation. The aberrant generation of Aβ43 by this particular mutant provides a direct objection against the presenilin hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119496 | PMC |
http://dx.doi.org/10.15252/emmm.201505952 | DOI Listing |
Proc Natl Acad Sci U S A
August 2024
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.
Mutations in the genes are the major cause of familial Alzheimer's disease, and presenilin (PS) is the catalytic subunit of γ-secretase, which cleaves type I transmembrane proteins, including the amyloid precursor protein (APP) to release Aβ peptides. While PS plays an essential role in the protection of neuronal survival, mutations also increase the ratio of Aβ42/Aβ40. Thus, it remains unresolved whether mutations cause AD via a loss of its essential function or increases of Aβ42/Aβ40.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115.
Mutations in the ( and ) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the γ-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD mutations exhibit impaired γ-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing γ-secretase activity and is located closest to the active site of γ-secretase.
View Article and Find Full Text PDFJ Biol Chem
July 2023
Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA. Electronic address:
About 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-β precursor protein (APP). PSEN1/2 catalyze production of Aβ peptides of different length from APP. Aβ peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD.
View Article and Find Full Text PDFCommun Biol
February 2023
Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA.
Presenilin-1 (PS1) is the catalytic subunit of γ-secretase which cleaves within the transmembrane domain of over 150 peptide substrates. Dominant missense mutations in PS1 cause early-onset familial Alzheimer's disease (FAD); however, the exact pathogenic mechanism remains unknown. Here we combined Gaussian accelerated molecular dynamics (GaMD) simulations and biochemical experiments to determine the effects of six representative PS1 FAD mutations (P117L, I143T, L166P, G384A, L435F, and L286V) on the enzyme-substrate interactions between γ-secretase and amyloid precursor protein (APP).
View Article and Find Full Text PDFJ Struct Biol
December 2020
Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. Electronic address:
The 4-subunit intramembrane protease complex γ-secretase cleaves many substrates including fragments of the β-amyloid precursor protein (APP), leading to formation of Aβ peptides, and Notch. Mutations in APP and the catalytic subunit of γ-secretase, presenilin, cause familial Alzheimer's disease (fAD). Mutations are assumed to change the substrate-binding and cleavage and thereby the Aβ formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!