Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr(2+) and Co(2+)) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr(2+) and Co(2+) was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr(2+) and Co(2+) uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796913 | PMC |
http://dx.doi.org/10.1038/srep23361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!