A semi-rigid ligand could capture effectively Yb(3+) ions to form a stable Yb(3+) complex and provide a potential cavity to accommodate alkali metal ions. Only K(+) ions could induce the Yb(3+) complex to form a 1D coordination polymer and promote the in situ formation of an NIR membrane coated with bigger Yb(3+) complex crystallites under mild conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cc01938b | DOI Listing |
RSC Adv
January 2025
Department of Condensed Matter Physics, GdS Optronlab, LUCIA Building, University of Valladolid Paseo de Belén 19 47011 Valladolid Spain.
Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
Fluorescence thermometry based on metal halide perovskites is increasingly becoming a hotspot due to its advantages of high detection sensitivity, noninvasiveness, and fast response time. However, it still presents certain technical challenges in practical applications, such as complex synthesis methods, the use of toxic solvents, and being currently mainly based on the visible/first near-infrared light with poor penetration and severe autofluorescence. In this study, we synthesize the second near-infrared (NIR-II) luminescent crystals based on Yb/Nd-doped zero-dimensional CsScCl·HO by a simple "dissolve-dry" method.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France.
Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Rare-earth-doped all-inorganic perovskite applications for near-infrared (NIR) emission are crucial for the construction of the next generation of intelligent lighting sources. However, the preparation of rare-earth-doped all-inorganic perovskite is complex, and difficult to control, and the issue of thermal quenching poses significant challenges to its practical application. Here, in order to address these issues, a convenient photo-induced synthesis method for CsPbCl:Mn/Yb nanocrystals (NCs) is proposed by decomposing carbon tetrachloride with 365 nm light to provide chloride ions and regulate the formation of perovskite at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!