Escherichia coli strains are classified into four main phylogenetic groups (A, B1, B2, and D) and strains of these phylogroups differ in a number of characteristics. This study tested whether human fecal E. coli isolates belonging to different phylogroups differ in prevalence of bacteriocinogenic isolates and prevalence of individual bacteriocinogenic determinants. A set of 1283 fecal E. coli isolates from patients with different diseases was tested for the presence of DNA regions allowing classification into E. coli phylogroups and for the ability to produce bacteriocins (23 colicins and 7 microcins). Of the isolates tested, the most common was phylogroup B2 (38.3%) followed by phylogroups A (28.3%), D (26.3%) and B1 (7.2%). Altogether, 695 bacteriocin producers were identified representing 54.2% of all tested isolates. The highest prevalence of bacteriocin producers was found in group B2 (60.3%) and the lowest in group B1 (44.6%). Determinants encoding colicins E1, Ia, and microcin mV were most common in phylogroup A, determinants encoding microcins mM and mH47 were most common in phylogroup B2, and determinant encoding mB17 was most common in phylogroup D. The highest prevalence of bacteriocinogeny was found in phylogroup B2, suggesting that bacteriocinogeny and especially the synthesis of microcins was associated with virulent and resident E. coli strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906000 | PMC |
http://dx.doi.org/10.1002/mbo3.345 | DOI Listing |
Front Microbiol
January 2025
Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.
Introduction: The global rise of extended-spectrum beta-lactamase-producing (ESBL-PE) challenges resource-limited countries with insufficient laboratory infrastructure. This study investigates fecal carriage and risk factors for ESBL-PE and carbapenemase-producing organisms among patients with urinary tract infection (UTI) in rural Tanzania.
Methods: This cross-sectional study was conducted at St.
Sci Rep
January 2025
Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India.
Urinary tract infections are a common condition affecting people globally, with multidrug-resistant (MDR) Escherichia coli (E. coli) being a major causative agent. Antimicrobial susceptibility profiling was performed using the VITEK 2 automated system for 1254 E.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
is a significant pathogen responsible for infections in both humans and livestock, possessing various virulence mechanisms and antimicrobial resistance that make it even more concerning. In this study, several internationally recognized clones of were identified, such as ST131, ST38, ST648, and ST354, from chicken meat, pork, and human infection samples. Notably, ST131, belonging to phylogroup B2, was the dominant sequence type (ST) in human samples, while ST38, belonging to phylogroup D, was the most prevalent in meat samples.
View Article and Find Full Text PDFJ Water Health
December 2024
Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India E-mail:
The spread of antimicrobial resistance (AMR) poses global health threats, with wastewater treatment plants (WWTPs) as hotspots for its development. Horizontal gene transfer facilitates acquisition of resistance genes, particularly through integrons in . Our study investigates isolates from hospital and municipal WWTPs, focusing on integrons, their temporal correlation and phenotypic and molecular characterization of AMR.
View Article and Find Full Text PDFCell Host Microbe
January 2025
Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK. Electronic address:
The Pseudomonas syringae species complex harbors a diverse range of pathogenic bacteria that can infect hosts across the plant kingdom. However, much of our current understanding of P. syringae is centered on its infection of flowering plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!