Background: Sugarcane mosaic virus (SCMV) is responsible for large-scale economic losses in the global production of sugarcane, maize, sorghum, and some other graminaceous species. To understand the evolutionary mechanism of SCMV populations, this virus was studied in Shanxi, China. A total of 86 maize leaf samples (41 samples in 2012 and 45 samples in 2013) were collected from 4 regions of Shanxi.
Results: Double-antibody sandwich (DAS)-ELISA and RT-PCR showed 59 samples (30 samples in 2012 and 29 samples in 2013) to be positive for SCMV, from which 10 new isolates of SCMV were isolated and sequenced. The complete genomes of these isolates are 9610 nt long, including the 5' and 3' non-coding regions, and encode a 3063-amino acid polyprotein. Phylogenetic analyses revealed that 24 SCMV isolates could be divided on the basis of the whole genome into 2 divergent evolutionary groups, which were associated with the host species. Among the populations, 15 potential recombination events were identified. The selection pressure on the genes of these SCMV isolates was also calculated. The results confirmed that all the genes were under negative selection.
Conclusions: Negative selection and recombination appear to be important evolutionary factors shaping the genetic structure of these SCMV isolates. SCMV is distributed widely in China and exists as numerous strains with distinct genetic diversity. Our findings will provide a foundation for evaluating the epidemiological characteristics of SCMV in China and will be useful in designing long-term, sustainable management strategies for SCMV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795778 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151549 | PLOS |
J Genet Eng Biotechnol
December 2024
Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Electronic address:
Background: Sugarcane is host of many viral pathogens that affects its growth and productivity. High-throughput sequencing (HTS) is comprehensive diagnostic platform that permit the precise detection of viral pathogens to resolve the disease epidemiology of the crop, thus providing the phytosanitary status of plants. The current work was designed to comprehend the virome profiling of sugarcane belonging to five varieties collected from the major crop producing states in India.
View Article and Find Full Text PDFPlant Dis
March 2024
Liaocheng University, 58291, School of Life Sciences, No.1 Hunan Road, Liaocheng City, Shandong Province, Liaocheng, Shandong, China, 252000;
Front Plant Sci
February 2024
Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
Introduction: Remorins (REMs) are plant-specific membrane-associated proteins that play important roles in plant-pathogen interactions and environmental adaptations. Group I REMs are extensively involved in virus infection. However, little is known about the gene family in sugarcane ( spp.
View Article and Find Full Text PDFPhytopathology
April 2024
CIRAD, UMR PHIM, 34098 Montpellier, France.
Sugarcane streak mosaic virus (SCSMV), now assigned to the genus of the family , was reported for the first time in 1932 in Louisiana and was believed to be strain F of sugarcane mosaic virus (SCMV) for more than six decades. SCMV-F was renamed SCSMV in 1998 after partial sequencing of its genome and phylogenetic investigations. Following the development of specific molecular diagnostic methods in the 2000s, SCSMV was recurrently found in sugarcane exhibiting streak mosaic symptoms in numerous Asian countries but not in the Western hemisphere or in Africa.
View Article and Find Full Text PDFArch Virol
November 2022
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
Sugarcane mosaic virus (SCMV) is a widely distributed potyvirus that causes mosaic disease in sugarcane, maize, sorghum, canna, and other monocot species worldwide. This study used 139 SCMV full-length genome sequences to analyze the phylogenetic relatedness of geographically distinct isolates. The phylogenetic analysis revealed four major groups of SCMV isolates that relate to their primary host.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!