Although Phacus longicauda is the type species of the genus Phacus and one of the most common species among autotrophic euglenids, its correct identification is nearly impossible. Over 30 morphologically similar taxa appear in the literature, but there are no good diagnostic features to distinguish them. Using environmental sampling and whole genome amplification, we delimited species within the Phacus longicauda complex. Morphological and molecular characters were analyzed for 36 strains isolated from environmental samples (mainly from Poland). DNA was obtained from a small number of cells (20-30) isolated with a micropipette from every sample (i.e., without setting up laboratory cultures), and phylogenetic analyses were based on variation in nSSU rDNA. Apart from Phacus longicauda, three other species (Phacus circumflexus, Phacus helikoides, and Phacus tortus) were distinguished. Phacus cordata comb. nov. Zakryś et M. Łukomska and Phacus rotunda comb. nov. Zakryś et M. Łukomska had their taxonomic ranks changed and two species new to science, Phacus cristatus sp. nov. Zakryś et M. Łukomska and Phacus crassus sp. nov. Zakryś et M. Łukomska, were described. For all verified species, diagnostic descriptions were amended and epitypes designated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.12352 | DOI Listing |
J Phycol
December 2015
Department of Molecular Phylogenetics and Evolution, Faculty of Biology, University of Warsaw, Al. Ujazdowskie 4, Warszawa, PL-00-478, Poland.
Although Phacus longicauda is the type species of the genus Phacus and one of the most common species among autotrophic euglenids, its correct identification is nearly impossible. Over 30 morphologically similar taxa appear in the literature, but there are no good diagnostic features to distinguish them. Using environmental sampling and whole genome amplification, we delimited species within the Phacus longicauda complex.
View Article and Find Full Text PDFJ Phycol
February 2012
Michigan State University, Department of Plant Biology, 166 Plant Biology, East Lansing, Michigan 48824, USA.
One of the foremost issues in the field of algal taxonomy is the inability to acquire, grow, and sequence new taxa. This problem is particularly true in the study of photosynthetic euglenoids where most of the distinct taxa in culture collections have been sequenced, and many other taxa of interest have been resistant to culturing, and thus, sequencing. In an effort to address this problem, we have utilized a new technique, novel to the field of taxonomy, which allows for the sequencing of nuclear genes from a very small number of cells.
View Article and Find Full Text PDFJ Eukaryot Microbiol
July 2010
Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, Canada V6T 1Z4.
Members of the euglenid genus Phacus are morphologically differentiated from other photosynthetic species by the presence of a rigid cytoskeleton (pellicle) and predominantly dorsoventrally flattened, leaf-shaped cells. In order to better understand the evolutionary history of this lineage, we used scanning electron microscopy to examine patterns of pellicle strips in Phacus acuminatus, Phacus longicauda var. tortus, Phacus triqueter, Phacus segretii, Phacus pleuronectes, Phacus similis, Phacus pusillus, Phacus orbicularis, Phacus warszewiczii, and Discoplastis spathirhyncha, a putative close relative of Phacus and Lepocinclis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!