The diagnosis of the order Sporolithales is currently restricted to tetrasporangial anatomy. Until recently, there were few reports about gametangial, and more specifically carposporangial material for the Sporolithales. This study provides the first detailed observations of the anatomy of the mature carposporophyte phase from three species of Sporolithales commonly found in rhodolith beds from Brazil: Sporolithon episporum, S. ptychoides, and Sporolithon sp. Using these observations, along with previously published descriptions and illustrations from other representative species in the order, a comparison was made with the other three orders (Corallinales, Hapalidiales, and Rhodogorgonales) of the Corallinophycidae. We amend the diagnosis of the order Sporolithales to include the anatomy of the mature carposporophyte as follows: carposporangial conceptacles that lack a central fusion cell, but instead with numerous, short, one to two-celled, filaments that bear oblong terminal carposporangia that are distributed across the conceptacle chamber floor and walls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.12351 | DOI Listing |
Glob Chang Biol
October 2021
Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance.
View Article and Find Full Text PDFMol Phylogenet Evol
September 2020
Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39 75005 Paris, France. Electronic address:
The subclass Corallinophycidae is the only group of red algae characterized by the presence of calcite crystals in their cell walls. Except for the Rhodogorgonales, the remaining orders - collectively called corallines - are diverse and widely distributed, having calcified cell walls and highly variable morphology. Corallines constitute the group with the richest fossil record among marine algae.
View Article and Find Full Text PDFJ Phycol
October 2017
Biology Department and Herbarium, University of North Carolina at Chapel Hill, Coker Hall CB 3280, Chapel Hill, North Carolina, 27599-3280, USA.
Interspecific systematics in the red algal order Sporolithales remains problematic. To re-evaluate its species, DNA analyses were performed on historical type material and recently collected specimens assigned to the two genera Sporolithon and Heydrichia. Partial rbcL sequences from the lectotype specimens of Sporolithon ptychoides (the generitype species) and Sporolithon molle, both from El Tor, Egypt, are exact matches to field-collected topotype specimens.
View Article and Find Full Text PDFJ Phycol
December 2015
Departamento de Botânica, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão. Av. Brigadeiro Trompowsky, s.n., Rio de Janeiro, RJ, 21941-900, Brasil.
The diagnosis of the order Sporolithales is currently restricted to tetrasporangial anatomy. Until recently, there were few reports about gametangial, and more specifically carposporangial material for the Sporolithales. This study provides the first detailed observations of the anatomy of the mature carposporophyte phase from three species of Sporolithales commonly found in rhodolith beds from Brazil: Sporolithon episporum, S.
View Article and Find Full Text PDFPhytochemistry
September 2012
Department of Marine Science, University of Otago, Dunedin 9054, New Zealand.
The coralline algae in the orders Corallinales and Sporolithales (subclass Corallinophycidae), with their high degree of mineralogical variability, pose a challenge to projections regarding mineralogy and response to ocean acidification. Here we relate skeletal carbonate mineralogy to a well-established phylogenetic framework and draw inferences about the effects of future changes in sea-water chemistry on these calcified red algae. A collection of 191 coralline algal specimens from New Zealand, representing 13 genera and 28 species, included members of three families: Corallinaceae, Hapalidiaceae, and Sporolithaceae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!