Antibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation. Due to the complexity of honey it is unknown if this effect is directly due to MGO. In this ultrastructural investigation the effects of MGO on the morphology of bacteria and specifically the structure of fimbriae and flagella were investigated. MGO effectively inhibited Gram positive (Bacillus subtilis; MIC 0.8 mM and Staphylococcus aureus; MIC 1.2 mM) and Gram negative (P. aeruginosa; MIC 1.0 mM and Escherichia coli; MIC 1.2 mM) bacteria growth. The ultrastructural effects of 0.5, 1.0 and 2 mM MGO on B. substilis and E. coli morphology was then evaluated. At 0.5 mM MGO, bacteria structure was unaltered. For both bacteria at 1 mM MGO fewer fimbriae were present and the flagella were less or absent. Identified structures appeared stunted and fragile. At 2 mM MGO fimbriae and flagella were absent while the bacteria were rounded with shrinkage and loss of membrane integrity. Antibacterial MGO causes alterations in the structure of bacterial fimbriae and flagella which would limit bacteria adherence and motility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/01913123.2016.1154914 | DOI Listing |
Sci Adv
December 2024
Renmin Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Institute of Molecular Medicine, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China.
Programming precise and specific microbial intraspecies or interspecies interaction would be powerful for microbial metabolic regulation, signal pathway mechanism understanding, and therapeutic application. However, it is still of great challenge to develop a simple and universal method to artificially encode the microbial interactions without interfering with the intrinsic cell metabolism. Here, we proposed an extensible and flexible framework nucleic acid strategy for encoding the specific and precise microbial interactions upon self-assembly.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2024
Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
Front Cell Infect Microbiol
October 2024
Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
Front Microbiol
September 2024
Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.
is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in .
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy. Electronic address:
Biofilms are a critical factor for food safety, causing important economic losses. Among the novel strategies for controlling biofilms, essential oils (EOs) can represent an environmentally friendly approach, able to act both on early and mature stages of biofilm formation. This review reports the anti-biofilm mechanisms of action of EOs against five pathogenic bacterial species known for their biofilm-forming ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!