Electroclinic measurements are reported for two chiral liquid crystals above their bulk chiral isotropic-nematic phase transition temperatures. It is found that an applied electric field E induces a rotation θ [∝Ε] of the director in the very thin paranematic layers that are induced by the cell's two planar-aligning substrates. The magnitude of the electroclinic coefficient dθ/dE close to the transition temperature is comparable to that of a bulk chiral nematic, as well as to that of a parasmectic region above a bulk isotropic-to-chiral smectic-A phase. However, dθ/dE in the paranematic layer varies much more slowly with temperature than in the parasmectic phase, and its relaxation time is slower by more than three orders of magnitude than that of the bulk chiral nematic electroclinic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.93.022701 | DOI Listing |
Nat Commun
January 2025
The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA.
Recently, it was proposed that the chiral central charge of a gapped, two-dimensional quantum many-body system is proportional to a bulk ground state entanglement measure known as the modular commutator. While there is significant evidence to support this relation, we show in this Letter that it is not universal. We give examples of lattice systems that have vanishing chiral central charge, which nevertheless give nonzero "spurious" values for the modular commutator for arbitrarily large system sizes, in both one and two dimensions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Manipulating elastic waves in lower-dimensional mechanical metamaterials has attracted much attention since it lays the foundation for the design of various elastic functional devices, especially for on-chip size. However, due to the experimental challenges, it is very difficult to control elastic waves in higher dimensions. In this Letter, we introduce an extra structural parameter to synthesize and investigate the on-chip Weyl physics in silicon-on-insulator system.
View Article and Find Full Text PDFChemistry
January 2025
Universite Catholique de Louvain, IMCN / MOST, 1 Place Louis Pasteur, Batîment Lavoisier, b.172, 1348, Louvain-La-Neuve, BELGIUM.
We introduce mechanochemical deracemization (MCDR) as a novel strategy for obtaining enantiopure compounds. This study demonstrates the successful transposition of six archetypical deracemization reactions from a solvent-based to a solvent-minimized ball milling environment. The scope includes a ketone, isoindolinones, imines, an ester, and an inorganic compound, all of which deracemized successfully.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China.
C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!