The paper mainly studied the effects of enhanced UV-B radiation on the nutritional and active ingredient contents during the floral development of medicinal chrysanthemum. The experiment included two levels of UV-B radiation (0 and 400μWcm(-2)). The contents of hydrogen peroxide (H2O2), anthocyanin, UV-B absorbing compounds, total chlorophyll and carotenoids, and the activities of phenylalanine ammonia lyase enzyme (PAL) and cinnamic acid-4-hydroxylase enzyme (C4H) in flowers significantly decreased with the floral development. However, the contents of soluble sugar, amino acid and total vitamin C in flowers significantly increased with the floral development. The contents of flavonoid and chlorogenic acid were significantly different in the four stages of floral development, and their highest contents were found in the bud stage (stage 2). In the four stages of floral development, enhanced UV-B radiation significantly increased the contents of H2O2, UV-B absorbing compounds, chlorophyll, carotenoids, soluble sugar, amino acid, vitamin C, flavonoid and chlorogenic acid, and the activities of PLA and C4H in flowers. The results indicated that the highest contents of active and nutrient ingredients in flowers were found not to be in the same developmental stages of flowers. Comprehensive analysis revealed that the best harvest stage of chrysanthemum flowers was between the bud stage and the young flower stage (stage 2 and stage 3), which could simultaneously gain the higher contents of active and nutritional ingredients in flowers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2016.02.019 | DOI Listing |
Front Plant Sci
December 2024
Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.
View Article and Find Full Text PDFJ Food Sci
January 2025
Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China.
Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.
View Article and Find Full Text PDFFood Chem
January 2025
Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!