A SNP-Based Molecular Barcode for Characterization of Common Wheat.

PLoS One

Key Laboratory of Crop Gene Resources and Germplasm Enhancement, MOA, the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, CAAS, Beijing, 100081, China.

Published: August 2016

Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP) genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795793PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150947PLOS

Publication Analysis

Top Keywords

wheat cultivars
8
wheat
7
snp-based molecular
4
molecular barcode
4
barcode characterization
4
characterization common
4
common wheat
4
wheat wheat
4
wheat grown
4
grown staple
4

Similar Publications

Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.

View Article and Find Full Text PDF

Optimizing nitrogen (N) sources has the potential to improve wheat tillering, nitrogen use efficiency (NUE), and grain yield, yet the underlying mechanisms remain unclear. This study hypothesizes that combining specific N sources can increase zeatin riboside + zeatin (ZR + ZT) content in tiller nodes and maintain a higher ZR + ZT/gibberellin A7 (GA) ratio, thereby promoting tiller development, enhancing NUE, and increasing yield. The effects of N source treatments on two wheat cultivars, the multi-spike Shannong 28 (SN28) and the large-spike Tainong 18 (TN18), were investigated.

View Article and Find Full Text PDF

The Physicochemical and Rheological Properties of Green Banana Flour-Wheat Flour Bread Substitutions.

Plants (Basel)

January 2025

Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.

Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.

View Article and Find Full Text PDF

The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects.

Plants (Basel)

January 2025

Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.

Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane.

View Article and Find Full Text PDF

The fungus Eriks () is the cause of leaf rust, one of the most damaging diseases, which significantly reduces common wheat yields. In -resistant adult plants, an APR-type resistance is observed, which protects the plant against multiple pathogen races and is distinguished by its persistence under production conditions. With a more complete understanding of the molecular mechanisms underlying the function of APR genes, it will be possible to develop new strategies for resistance breeding in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!